Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T21:53:03.176Z Has data issue: false hasContentIssue false

Reactive Rayleigh–Taylor turbulence

Published online by Cambridge University Press:  25 August 2009

M. CHERTKOV
Affiliation:
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
V. LEBEDEV
Affiliation:
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Russia
N. VLADIMIROVA*
Affiliation:
Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA ASC Flash Center, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637, USA
*
Email address for correspondence: [email protected]

Abstract

The Rayleigh–Taylor (RT) instability develops and leads to turbulence when a heavy fluid falls under the action of gravity through a light one. We consider a model in which the RT instability is accompanied by a reactive transformation between the fluids. We study the model using direct numerical simulations (DNSs), focusing on the effect of the reaction (flame) on the turbulent mixing. We discuss ‘slow’ reactions in which the characteristic reaction time exceeds the temporal scale of the RT instability, τ ≫ tinst. In the early turbulent stage, tinstt ≲ τ, effects of the flame are distributed over a maturing mixing zone, whose development is weakly influenced by the reaction. At t ≳ τ, the fully mixed zone transforms into a conglomerate of pure-fluid patches of sizes proportional to the mixing zone width. In this ‘stirred flame’ regime, temperature fluctuations are consumed by reactions in the regions separating the pure-fluid patches. This DNS-based qualitative description is followed by a phenomenology suggesting that thin turbulent flame is of a single-fractal character, and thus distribution of the temperature field is strongly intermittent.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrews, M. J. & Spalding, D. B. 1990 A simple experiment to investigate two-dimensional mixing by Rayleigh–Taylor instability. Phys. Fluids A 2, 922927.CrossRefGoogle Scholar
Bockmann, M. & Muller, S. C. 2004 Coarsening in the buoyancy-driven instability of a reaction-diffusion front. Phys. Rev. E 70, 046302/1–5.CrossRefGoogle ScholarPubMed
Borghi, R. 1988 Turbulent combustion modelling. Prog. Energy Combust. Sci. 14, 245292.CrossRefGoogle Scholar
Cabot, W. H. & Cook, A. W. 2006 Reynolds number effects on Rayleigh–Taylor instability with possible implications for type Ia supernovae. Nature Phys. 2, 562568.CrossRefGoogle Scholar
Cetegen, B. M. & Kasper, K. D. 1996 Experiments on the oscillatory behaviour of buoyant plumes of helium and helium–air mixtures. Phys. Fluids 8, 29742984.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydrodynamic Instability. Dover.Google Scholar
Chertkov, M. 2003 Phenomenology of Rayleigh–Taylor turbulence. Phys. Rev. Lett. 91, 115001/1–4.CrossRefGoogle ScholarPubMed
Chertkov, M., Kolokolov, I. & Lebedev, V. 2005 Effects of surface tension on immiscible Rayleigh–Taylor turbulence. Phys. Rev. E 71, 055301/1–4.CrossRefGoogle ScholarPubMed
Constantin, P., Kiselev, A. & Ryzhik, L. 2001 Quenching of flames by fluid advection. Comm. Pure Appl. Math. 54, 13201342.CrossRefGoogle Scholar
Constantin, P., Lewicka, M. & Ryzhik, L. 2006 Traveling waves in 2d reactive Boussinesq systems with no-slip boundary conditions. Nonlinearity 19, 26052615.CrossRefGoogle Scholar
Constantin, P., Oberman, A., Kiselev, A. & Ryzhik, L. 2000 Bulk burning rate in passive–reactive diffusion. Arch. Rational Mech. 154, 5391.CrossRefGoogle Scholar
Cook, A. W. & Dimotakis, P. E. 2001 Transition stages of Rayleigh–Taylor instability between miscible fluids. J. Fluid Mech. 443 (2), 6999.CrossRefGoogle Scholar
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22, 469474.CrossRefGoogle Scholar
Dalziel, S. B., Linden, P. F. & Youngs, D. L. 1999 Self-similarity and internal structure of turbulence induced by Rayleigh–Taylor instability. J. Fluid Mech. 399, 148.CrossRefGoogle Scholar
Damköler, G. 1940 The effect of turbulence on the flame velocity in gas mixtures. Z. Electrochem. Angew. Phys. Chem. 46, 601626.Google Scholar
Duff, R. E., Harlow, F. H. & Hirt, C. W. 1962 Effects of diffusion on interface instability between gases. Phys. Fluids 5, 417425.CrossRefGoogle Scholar
Fisher, R. 1937 The wave of advance of advantageous genes. Ann. Eugen. 7, 355369.CrossRefGoogle Scholar
Freeman, J. R., Clauser, M. J. & Thompson, S. L. 1977 Rayleigh–Taylor instabilities in inertial-confinement fusion targets. Nucl. Fus. 17, 223230.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Gamezo, V. N., Khokhlov, A. M., Oran, E. S., Chtchelkanova, A. Y. & Rosenberg, R. O. 2003 Thermonuclear supernovae: simulations of the deflagration stage and their implications. Science 299, 7781.CrossRefGoogle ScholarPubMed
Kerstein, A. R. 1991 Fractal dimensions of propagating interfaces in turbulence. Phys. Rev. A 44, 33633365.CrossRefGoogle ScholarPubMed
Kerstein, A. R. 2002 Turbulence in combustion processes. Proc. Combust. Inst. 29, 17631773.CrossRefGoogle Scholar
Khokhlov, A. M. 1995 Propagation of turbulent flames in supernovae. Astrophys. J. 449, 695713.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 The equation of turbulent motion in an incompressible viscous fluid. Izv. Akad. Nauk. SSSR, Ser. Fiz. 6 (1–2), 5658.Google Scholar
Kolmogorov, A. N., Petrovskii, I. G. & Piskunov, N. S. 1937 Étude del'équation de la chaleurde matière et son application à unproblème biologique. Bull. Moskovskogo Gosudarstvennogo Univ. Mat. Mekh. 1, 125. For an English translation, see P. Pelcé (Ed.), Dynamics of Curved Fronts, 1988, pp. 105–130, Academic.Google Scholar
Lima, D., Van Saarloos, W. & De Wit, A. 2006 Rayleigh–Taylor instabilities of pulled versus pushed fronts. Physica D 218, 158166.CrossRefGoogle Scholar
Linden, P. F., Redondo, J. M. & Youngs, D. L. 1994 Molecular mixing in Rayleigh–Taylor instability. J. Fluid. Mech. 265, 97.CrossRefGoogle Scholar
Obukhov, A. M. 1949 Structure of the temperature field in a turbulent flow. Izv. Akad. Nauk SSSR, Geogr. Geofiz 13, 5869.Google Scholar
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.CrossRefGoogle Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion. Edwards.Google Scholar
Ramaprabhu, P. & Andrews, M. J. 2004 Experimental investigation of Rayleigh–Taylor mixing at small Atwood numbers. J. Fluid. Mech. 502, 233271.CrossRefGoogle Scholar
Ramaprabhu, P., Dimonte, G. & Andrews, M. 2005 A numerical study of the unfluence of initial perturbations on the turbulent Rayleigh–Taylor instability. J. Fluid Mech. 536, 285319.CrossRefGoogle Scholar
Rayleigh, Lord 1883 Investigation of the character of the equilibrium on an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 14, 170177.Google Scholar
Ristorcelli, R. & Clark, T. T. 2004 Rayleigh–Taylor turbulence: self-similar analysis and direct numerical simulation. J. Fluid Mech. 507, 213253.CrossRefGoogle Scholar
Sharp, D. H. 1984 An overview of Rayleigh–Taylor instability. Physica D 12, 318.CrossRefGoogle Scholar
Shraiman, B. & Siggia, E. 1994 Lagrangian path integrals and fluctuations in random flow. Phys. Rev. E 49, 29122927.Google ScholarPubMed
Snider, D. M. & Andrews, M. J. 1996 The simulation of mixing layers driven by compound buoyancy and shear. ASME J. Fluids Engng 118, 370376.CrossRefGoogle Scholar
Sreenivasan, K.R., Ramshankar, R. & Meneveau, C. 1989 Mixing, entrainment and fractal dimensions of interfaces in turbulent flows. Proc. R. Soc. Lond. A 421, 79108.Google Scholar
Taylor, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. London A 201 (1065), 192196.Google Scholar
Tieszen, S. R. 2001 On the fluid mechanics of fires. Annu. Rev. Fluid Mech. 33, 6792.CrossRefGoogle Scholar
Tufo, H. M. & Fischer, P. F. 2001 Fast parallel direct solvers for coarse grid problems. J. Parallel Distrib. Comput. 61, 151177.CrossRefGoogle Scholar
Vladimirova, N. & Chertkov, M. 2009 Self-similarity and universality in Rayleigh–Taylor Boussinesq turbulence. Phys. Fluids 21, 015102/1–9.CrossRefGoogle Scholar
Vladimirova, N., Constantin, P., Kiselev, A., Ruchayskiy, O. & Ryzhik, L. 2003 Flame enhancement and quenching in fluid flows. Combust. Theory Modelling 7, 487508.CrossRefGoogle Scholar
Vladimirova, N. & Rosner, R. 2005 Model flames in the Boussinesq limit: the case of pulsating fronts. Phys. Rev. E 71, 067303/1–4.Google ScholarPubMed
Williams, F. A. 1985 Combustion Theory. Benjamin Cummings.Google Scholar
Wilson, P. N. & Andrews, M. J. 2002 Spectral measurements of Rayleigh–Taylor mixing at small Atwood number. Phys. Fluids 14, 938945.CrossRefGoogle Scholar
Young, Y. N., Tufo, H., Dubey, A. & Rosner, R. 2001 On the miscible Rayleigh–Taylor instability: two and three dimensions. J. Fluid Mech. 447, 377408.CrossRefGoogle Scholar
Zingale, M., Woosley, S. E., Rendleman, C. A., Day, M. S. & Bell, J. B. 2005 Three-dimensional numerical simulations of Rayleigh–Taylor unstable flames in type Ia supernovae. Astrophys. J. 632, 10211034.CrossRefGoogle Scholar