Article contents
Rare transitions to thin-layer turbulent condensates
Published online by Cambridge University Press: 10 September 2019
Abstract
Turbulent flows in a thin layer can develop an inverse energy cascade leading to spectral condensation of energy when the layer height is smaller than a certain threshold. These spectral condensates take the form of large-scale vortices in physical space. Recently, evidence for bistability was found in this system close to the critical height: depending on the initial conditions, the flow is either in a condensate state with most of the energy in the two-dimensional (2-D) large-scale modes, or in a three-dimensional (3-D) flow state with most of the energy in the small-scale modes. This bistable regime is characterised by the statistical properties of random and rare transitions between these two locally stable states. Here, we examine these statistical properties in thin-layer turbulent flows, where the energy is injected by either stochastic or deterministic forcing. To this end, by using a large number of direct numerical simulations (DNS), we measure the decay time $\unicode[STIX]{x1D70F}_{d}$ of the 2-D condensate to 3-D flow state and the build-up time $\unicode[STIX]{x1D70F}_{b}$ of the 2-D condensate. We show that both of these times $\unicode[STIX]{x1D70F}_{d},\unicode[STIX]{x1D70F}_{b}$ follow an exponential distribution with mean values increasing faster than exponentially as the layer height approaches the threshold. We further show that the dynamics of large-scale kinetic energy may be modelled by a stochastic Langevin equation. From time-series analysis of DNS data, we determine the effective potential that shows two minima corresponding to the 2-D and 3-D states when the layer height is close to the threshold.
- Type
- JFM Papers
- Information
- Copyright
- © 2019 Cambridge University Press
References
- 14
- Cited by