Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T14:54:34.221Z Has data issue: false hasContentIssue false

The rapid distortion of two-way coupled particle-laden turbulence

Published online by Cambridge University Press:  19 August 2019

M. Houssem Kasbaoui
Affiliation:
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, USA
Donald L. Koch*
Affiliation:
Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
Olivier Desjardins
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
*
Email address for correspondence: [email protected]

Abstract

In this study, we address the modification of sheared turbulence by dispersed inertial particles. The preferential sampling of the straining regions of the flow by inertial particles in turbulence leads to an inhomogeneous distribution of particles. The strong gravitational loading exerted by the highly concentrated regions results in anisotropic alteration of turbulence at small scales in the direction of gravity. These effects are investigated in a rapid distortion theory (RDT) extended for two-way coupled particle-laden flows. To make the analysis tractable, we assume that particles have small but non-zero inertia. In the classical results for single-phase flows, the RDT assumption of fast shearing compared to the turbulence time scales leads to the distortion and shear-induced production of turbulence. In particle-laden turbulence, the coupling between the two phases under rapid shearing induces number density fluctuations that convert gravitational potential energy to turbulent kinetic energy and modulate the turbulence spectrum in a manner that increases with mass loading. Turbulence statistics obtained from RDT are compared with Euler–Lagrange simulations of homogeneously sheared particle-laden turbulence.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, A. M. & Elghobashi, S. 2000 On the mechanisms of modifying the structure of turbulent homogeneous shear flows by dispersed particles. Phys. Fluids 12 (11), 29062930.10.1063/1.1308509Google Scholar
Ahmed, A. M. & Elghobashi, S. 2001 Direct numerical simulation of particle dispersion in homogeneous turbulent shear flows. Phys. Fluids 13 (11), 33463364.10.1063/1.1405443Google Scholar
Bellman, R. 1997 Introduction to Matrix Analysis, 2nd edn. Society for Industrial and Applied Mathematics.Google Scholar
Blanes, S., Casas, F., Oteo, J. A. & Ros, J. 2009 The Magnus expansion and some of its applications. Phys. Rep. 470 (5-6), 151238.Google Scholar
Briard, A., Gomez, T., Mons, V. & Sagaut, P. 2016 Decay and growth laws in homogeneous shear turbulence. J. Turbul. 17 (7), 699726.10.1080/14685248.2016.1191641Google Scholar
Capecelatro, J. & Desjardins, O. 2013 An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 238, 131.10.1016/j.jcp.2012.12.015Google Scholar
Capecelatro, J., Desjardins, O. & Fox, R. O. 2014 Numerical study of collisional particle dynamics in cluster-induced turbulence. J. Fluid Mech. 747, R2.10.1017/jfm.2014.194Google Scholar
Craik, A. D. D. & Criminale, W. O. 1986 Evolution of wavelike disturbances in shear flows: a class of exact solutions of the Navier–Stokes equations. Proc. R. Soc. Lond. A 406 (1830), 1326.10.1098/rspa.1986.0061Google Scholar
Desjardins, O., Blanquart, G., Balarac, G. & Pitsch, H. 2008a High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227 (15), 71257159.10.1016/j.jcp.2008.03.027Google Scholar
Desjardins, O., Fox, R. O. & Villedieu, P. 2008b A quadrature-based moment method for dilute fluid-particle flows. J. Comput. Phys. 227 (4), 25142539.10.1016/j.jcp.2007.10.026Google Scholar
Druzhinin, O. A. 1994 Concentration waves and flow modification in a particle-laden circular vortex. Phys. Fluids 6 (10), 32763284.10.1063/1.868060Google Scholar
Druzhinin, O. A. 1995 On the two-way interaction in two-dimensional particle-laden flows: the accumulation of particles and flow modification. J. Fluid Mech. 297, 4976.10.1017/S0022112095003004Google Scholar
Druzhinin, O. A. 2001 The influence of particle inertia on the two-way coupling and modification of isotropic turbulence by microparticles. Phys. Fluids 13 (12), 37383755.10.1063/1.1415735Google Scholar
Duran, I. & Moreau, S. 2013 Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion. J. Fluid Mech. 723, 190231.10.1017/jfm.2013.118Google Scholar
Eaton, J. K. & Fessler, J. R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20 (Supplement 1), 169209.10.1016/0301-9322(94)90072-8Google Scholar
Elghobashi, S. & Truesdell, G. C. 1992 Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655700.10.1017/S0022112092002532Google Scholar
Falkovich, G., Fouxon, A. & Stepanov, M. G. 2002 Acceleration of rain initiation by cloud turbulence. Nature 419 (6903), 151154.10.1038/nature00983Google Scholar
Ferry, J. & Balachandar, S. 2001 A fast Eulerian method for disperse two-phase flow. Intl J. Multiphase Flow 27 (7), 11991226.10.1016/S0301-9322(00)00069-0Google Scholar
Ferry, J. & Balachandar, S. 2002 Equilibrium expansion for the Eulerian velocity of small particles. Powder Technol. 125 (2–3), 131139.10.1016/S0032-5910(01)00499-5Google Scholar
Gualtieri, P., Picano, F., Sardina, G. & Casciola, C. M. 2013 Clustering and turbulence modulation in particle-laden shear flows. J. Fluid Mech. 715, 134162.10.1017/jfm.2012.503Google Scholar
Hunt, J. C. R. & Carruthers, D. J. 1990 Rapid distortion theory and the ‘problems’ of turbulence. J. Fluid Mech. 212, 497532.10.1017/S0022112090002075Google Scholar
Hunt, J. C. R., Carruthers, D. J. & Fung, J. C. H. 1991 Rapid distortion theory as a means of exploring the structure of turbulence. In New Perspectives in Turbulence, pp. 55103. Springer.10.1007/978-1-4612-3156-1_2Google Scholar
Ireland, P. J., Bragg, A. D. & Collins, L. R. 2016 The effect of Reynolds number on inertial particle dynamics in isotropic turbulence. Part 2. Simulations with gravitational effects. J. Fluid Mech. 796, 659711.10.1017/jfm.2016.227Google Scholar
Ireland, P. J. & Desjardins, O. 2017 Improving particle drag predictions in Euler–Lagrange simulations with two-way coupling. J. Comput. Phys. 338, 405430.10.1016/j.jcp.2017.02.070Google Scholar
Isaza, J. C. & Collins, L. R. 2009 On the asymptotic behaviour of large-scale turbulence in homogeneous shear flow. J. Fluid Mech. 637, 213239.10.1017/S002211200999053XGoogle Scholar
Isaza, J. C., Warhaft, Z., Collins, L. R.& Research, International Collaboration for Turbulence 2009 Experimental investigation of the large-scale velocity statistics in homogeneous turbulent shear flow. Phys. Fluids 21 (6), 065105.10.1063/1.3139303Google Scholar
Kasbaoui, M. H., Koch, D. L. & Desjardins, O. 2019 Clustering in Euler–Euler and Euler–Lagrange simulations of unbounded homogeneous particle-laden shear. J. Fluid Mech. 859, 174203.10.1017/jfm.2018.796Google Scholar
Kasbaoui, M. H., Koch, D. L., Subramanian, G. & Desjardins, O. 2015 Preferential concentration driven instability of sheared gas–solid suspensions. J. Fluid Mech. 770, 85123.10.1017/jfm.2015.136Google Scholar
Kasbaoui, M. H., Patel, R. G., Koch, D. L. & Desjardins, O. 2017 An algorithm for solving the Navier–Stokes equations with shear-periodic boundary conditions and its application to homogeneously sheared turbulence. J. Fluid Mech. 833, 687716.10.1017/jfm.2017.734Google Scholar
Lee, M. J., Kim, J. & Moin, P. 1990 Structure of turbulence at high shear rate. J. Fluid Mech. 216, 561583.10.1017/S0022112090000532Google Scholar
Magnus, W. 1954 On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Maths 7 (4), 649673.10.1002/cpa.3160070404Google Scholar
Maxey, M. R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.10.1017/S0022112087000193Google Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.10.1063/1.864230Google Scholar
Moffatt, H. K. 1965 The Interaction of Turbulance with Rapid Uniform Shear. Department of Aeronautics and Astronautics, Stanford University.Google Scholar
Morinishi, Y., Lund, T. S., Vasilyev, O. V. & Moin, P. 1998 Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143 (1), 90124.10.1006/jcph.1998.5962Google Scholar
Morinishi, Y., Vasilyev, O. V. & Ogi, T. 2004 Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations. J. Comput. Phys. 197 (2), 686710.10.1016/j.jcp.2003.12.015Google Scholar
Pearson, J. R. A. 1959 The effect of uniform distortion on weak homogeneous turbulence. J. Fluid Mech. 5 (02), 274288.10.1017/S0022112059000192Google Scholar
Pierce, C. D. & Moin, P. 2004 Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 7397.10.1017/S0022112004008213Google Scholar
Pope, S. B. 2001 Turbulent flows. Meas. Sci. Technol. 12 (11), 2020.10.1088/0957-0233/12/11/705Google Scholar
Pumir, A. 1996 Turbulence in homogeneous shear flows. Phys. Fluids 8 (11), 31123127.10.1063/1.869100Google Scholar
Rani, S. L. & Balachandar, S. 2003 Evaluation of the equilibrium Eulerian approach for the evolution of particle concentration in isotropic turbulence. Intl J. Multiphase Flow 29 (12), 17931816.10.1016/j.ijmultiphaseflow.2003.09.005Google Scholar
Rogers, M. M.1986 The structure and modeling of the hydrodynamic and passive scalar fields in homogeneous turbulent shear flow. Ph.D. thesis, Stanford University, CA.Google Scholar
Rogers, M. M. 1991 The structure of a passive scalar field with a uniform mean gradient in rapidly sheared homogeneous turbulent flow. Phys. Fluids A 3 (1), 144154.10.1063/1.857873Google Scholar
Rogers, M. M. & Moin, P. 1987 The structure of the vorticity field in homogeneous turbulent flows. J. Fluid Mech. 176, 3366.10.1017/S0022112087000569Google Scholar
Savill, A. M. 1987 Recent developments in rapid-distortion theory. Annu. Rev. Fluid Mech. 19 (1), 531573.10.1146/annurev.fl.19.010187.002531Google Scholar
Shaw, R. A. 2003 Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35 (1), 183227.10.1146/annurev.fluid.35.101101.161125Google Scholar
Shen, P. & Yeung, P. K. 1997 Fluid particle dispersion in homogeneous turbulent shear flow. Phys. Fluids 9 (11), 34723484.10.1063/1.869456Google Scholar
Shen, X. & Warhaft, Z. 2000 The anisotropy of the small scale structure in high Reynolds number (R 𝜆 ∼ 1000) turbulent shear flow. Phys. Fluids 12 (11), 29762989.10.1063/1.1313552Google Scholar
Shin, M. & Lee, J. W. 2002 Nonequilibrium Reynolds stress for the dispersed phase of solid particles in turbulent flows. Phys. Fluids 14 (8), 28982916.10.1063/1.1491249Google Scholar
Shotorban, B. & Balachandar, S. 2009 Two-fluid approach for direct numerical simulation of particle-laden turbulent flows at small Stokes numbers. Phys. Rev. E 79 (5), 056703.Google Scholar
Squires, K. D. & Eaton, J. K. 1991 Preferential concentration of particles by turbulence. Phys. Fluids A 3 (5), 11691178.10.1063/1.858045Google Scholar
Sukheswalla, P., Vaithianathan, T. & Collins, L. R. 2013 Simulation of homogeneous turbulent shear flows at higher Reynolds numbers: numerical challenges and a remedy. J. Turbul. 14 (5), 6097.10.1080/14685248.2013.817677Google Scholar
Sumbekova, S., Cartellier, A., Aliseda, A. & Bourgoin, M. 2017 Preferential concentration of inertial sub-Kolmogorov particles: the roles of mass loading of particles, Stokes numbers, and Reynolds numbers. Phys. Rev. Fluids 2 (2), 024302.10.1103/PhysRevFluids.2.024302Google Scholar
Thomson, W. 1887 XXXIV. Stability of motion (continued from the May, June, and August Numbers). Broad river flowing down an inclined plane bed. Phil. Mag. 24 (148), 272278.10.1080/14786448708628094Google Scholar
Townsend, A. A. 1970 Entrainment and the structure of turbulent flow. J. Fluid Mech. 41 (1), 1346.10.1017/S0022112070000514Google Scholar
Zhang, D. Z. & Prosperetti, A. 1997 Momentum and energy equations for disperse two-phase flows and their closure for dilute suspensions. Intl J. Multiphase Flow 23 (3), 425453.10.1016/S0301-9322(96)00080-8Google Scholar