Article contents
Radiation and diffraction of second-order surface waves by floating bodies
Published online by Cambridge University Press: 21 April 2006
Abstract
The paper studies the radiation and diffraction by floating bodies of deep-water bichromatic and bidirectional surface waves subject to the second-order free-surface condition. A theory is developed for the evaluation of the second-order velocity potential and wave forces valid for bodies of arbitrary geometry, which does not involve the evaluation of integrals over the free surface or require an increased accuracy in the solution of the linear problem. Explicit sum- and difference-frequency ‘Green functions’ are derived for the radiation and diffraction problems, obtained from the solution of initial-value problems that ensure they satisfy the proper radiation condition at infinity. The second-order velocity potential is expressed as the sum of a particular and a homogeneous component. The former satisfies the non-homogeneous free-surface condition and is expressed explicitly in terms of the second-order Green functions. The latter is subject to the homogeneous free-surface condition and enforces the body boundary condition by the solution of a linear problem. An analysis is carried out of the singular behaviour of the second-order potential near the intersection of the body boundary with the free surface.
- Type
- Research Article
- Information
- Copyright
- © 1988 Cambridge University Press
References
- 13
- Cited by