Hostname: page-component-55f67697df-xlmdk Total loading time: 0 Render date: 2025-05-11T09:16:34.674Z Has data issue: false hasContentIssue false

Quasi-steady shock refraction phenomenon at a diffusive fast–slow interface

Published online by Cambridge University Press:  09 May 2025

Jingqian Pu
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Ben Guan
Affiliation:
College of Aerospace and Civil Engineering, Harbin Engineering University, Heilongjiang 150001, PR China
Zhiwei Deng
Affiliation:
College of Aerospace and Civil Engineering, Harbin Engineering University, Heilongjiang 150001, PR China
Zhigang Zhai*
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China
Xisheng Luo
Affiliation:
Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, PR China State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
*
Corresponding author: Zhigang Zhai, [email protected]

Abstract

The quasi-steady shock refraction at a diffusive air–SF$_6$ interface (fast–slow type) is investigated numerically and theoretically. A new refraction pattern where both shock and expansion waves are simultaneously present in the reflected waves (named RRR-E) is first observed at the diffusive interface. The new refraction pattern is a regular pattern that is not expected to occur in classical shock refraction at a sharp fast–slow interface. Through the shock polar method, continuous refraction processes occur within the diffusion layer to satisfy the kinematic relationship between the reflected wave and the transmitted shock, which results in the RRR-E formation. Subsequently, the conditions for the RRR-E occurrence are obtained theoretically and verified numerically. In the phase diagram of the refraction patterns, the presence of RRR-E results in the transition boundaries of different refraction patterns at the sharp fast–slow interface no longer being valid. Specifically, the appearance of RRR-E delays the Mach reflection refraction (MRR) process, which is of great significance for the design of scramjet engines.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abd-El-Fattah, A.M. & Henderson, L.F. 1978 a Shock waves at a fast–slow gas interface. J. Fluid. Mech. 86 (1), 1532.CrossRefGoogle Scholar
Abd-El-Fattah, A.M. & Henderson, L.F. 1978 b Shock waves at a slow–fast gas interface. J. Fluid. Mech. 89 (1), 7995.CrossRefGoogle Scholar
Arun Kumar, R., Rajesh, G. & Jagadeesh, G. 2022 The reflection and refraction of a curved shock front sliding over an air–water interface. Shock Waves 32 (6), 497515.CrossRefGoogle Scholar
Babinsky, H. & Harvey, J.K. 2011 Shock Wave–Boundary-Layer Interactions. Cambridge University Press.CrossRefGoogle Scholar
Ben-Dor, G., Igra, O. & Elperin, T. 2000 Handbook of Shock Waves. Elsevier.Google Scholar
Buttsworth, D.R. 1996 Interaction of oblique shock waves and planar mixing regions. J. Fluid. Mech. 306, 4357.CrossRefGoogle Scholar
Delmont, P., Keppens, R. & van der Holst, B. 2009 An exact Riemann-solver-based solution for regular shock refraction. J. Fluid. Mech. 627, 3353.CrossRefGoogle Scholar
Elias, P.Q. 2018 Improving supersonic flights with femtosecond laser filamentation. Sci. Adv. 4 (11), eaau5239.CrossRefGoogle ScholarPubMed
Fan, E., Guan, B., Wen, C. & Shen, H. 2019 Numerical study on the jet formation of simple-geometry heavy gas inhomogeneities. Phys. Fluids 31 (2), 026103.CrossRefGoogle Scholar
Gichon, Y., Jose, J.T., Chandravamsi, H., Evron, Y. & Ram, O. 2024 The dynamics of shock wave propagation far downstream of an abrupt area expansion. J. Fluid. Mech. 997, A30.CrossRefGoogle Scholar
Grossman, I.J. & Bruce, P.J. 2018 Confinement effects on regular–irregular transition in shock-wave–boundary-layer interactions. J. Fluid. Mech. 853, 171204.CrossRefGoogle Scholar
Grove, J.W. & Menikoff, R. 1990 Anomalous reflection of a shock wave at a fluid interface. J. Fluid. Mech. 219, 313336.CrossRefGoogle Scholar
Guan, B., Liu, Y., Wen, C. & Shen, H. 2018 Numerical study on liquid droplet internal flow under shock impact. AIAA J. 56 (9), 33823387.CrossRefGoogle Scholar
Guan, B., Yang, H., Yang, H. & Wang, G. 2022 On the irregular jet formation of shock-accelerated spherical heavy gas bubbles. Phys. Fluids 34 (12), 126111.CrossRefGoogle Scholar
Han, Z. & Yin, X. 1993 Shock Dynamics. Kluwer Academic Publishers and Science Press.CrossRefGoogle Scholar
Henderson, L.F. 1966 The refraction of a plane shock wave at a gas interface. J. Fluid Mech. 26 (3), 607637.CrossRefGoogle Scholar
Henderson, L.F. 1967 a On expansion waves generated by the refraction of a plane shock at a gas interface. J. Fluid Mech. 30 (2), 385402.CrossRefGoogle Scholar
Henderson, L.F. 1967 b The reflexion of a shock wave at a rigid wall in the presence of a boundary layer. J. Fluid Mech. 30 (4), 699722.CrossRefGoogle Scholar
Huete, C., Sánchez, A.L., Williams, F.A. & Urzay, J. 2015 Diffusion-flame ignition by shock-wave impingement on a supersonic mixing layer. J. Fluid Mech. 784, 74108.CrossRefGoogle Scholar
Luo, X., Wang, M., Si, T. & Zhai, Z. 2015 On the interaction of a planar shock with an SF6 polygon. J. Fluid Mech. 773, 366394.CrossRefGoogle Scholar
Markhotok, A. & Popovic, S. 2010 Refractive phenomena in the shock wave dispersion with variable gradients. J. Appl. Phys. 107 (12), 123302.CrossRefGoogle Scholar
Markhotok, A., Popovic, S. & Vuskovic, L. 2008 The boundary effects of the shock wave dispersion in discharges. Phys. Plasmas 15 (3), 032103.CrossRefGoogle Scholar
Martínez-Ruiz, D., Huete, C., Martínez-Ferrer, P.J. & Mira, D. 2019 Irregular self-similar configurations of shock-wave impingement on shear layers. J. Fluid Mech. 872, 889927.CrossRefGoogle Scholar
Matheis, J. & Hickel, S. 2015 On the transition between regular and irregular shock patterns of shock-wave/boundary-layer interactions. J. Fluid Mech. 776, 200234.CrossRefGoogle Scholar
Nourgaliev, R.R., Sushchikh, S.Y., Dinh, T. & Theofanous, T.G. 2005 Shock wave refraction patterns at interfaces. Intl J. Multiphase Flow 31 (9), 969995.CrossRefGoogle Scholar
Polachek, H. & Seeger, R.J. 1951 On shock-wave phenomena; refraction of shock waves at a gaseous interface. Phys. Rev. 84 (5), 922929.CrossRefGoogle Scholar
Puckett, E.G., Henderson, L.F. & Colella, P. 1995 A general theory of anomalous shock refraction. In Shock Waves@ Marseille IV: Shock Structure and Kinematics, Blast Waves and Detonations, pp. 139144. Springer.CrossRefGoogle Scholar
Raj, C.A.S., Prasad, S.V., Rajesh, G. & Sameen, A. 2024 Pseudosteady shock refractions over an air–water interface. J. Fluid Mech. 998, A49.Google Scholar
Sabnis, K. & Babinsky, H. 2023 A review of three-dimensional shock wave–boundary-layer interactions. Prog. Aerosp. Sci. 143, 100953.CrossRefGoogle Scholar
Shen, H. & Wen, C. 2016 A characteristic space–time conservation element and solution element method for conservation laws II. Multidimensional extension. J. Comput. Phys. 305, 775792.CrossRefGoogle Scholar
Shen, H., Wen, C., Parsani, M. & Shu, C. 2017 Maximum-principle-satisfying space–time conservation element and solution element scheme applied to compressible multifluids. J. Comput. Phys. 330, 668692.CrossRefGoogle Scholar
Shen, H., Wen, C. & Zhang, D. 2015 A characteristic space–time conservation element and solution element method for conservation laws. J. Comput. Phys. 288, 101118.CrossRefGoogle Scholar
Szubert, D., Grossi, F., Garcia, A.J., Hoarau, Y., Hunt, J.C. & Braza, M. 2015 Shock-vortex shear-layer interaction in the transonic flow around a supercritical airfoil at high Reynolds number in buffet conditions. J. Fluids Struct. 55, 276302.CrossRefGoogle Scholar
Takayama, K. & Ben-Dor, G. 1989 Pseudo-steady oblique shock wave reflections over water wedges. Exp. Fluids 8 (3–4), 129136.CrossRefGoogle Scholar
Taub, A.H. 1947 Refraction of plane shock waves. Phys. Rev. 72 (1), 5160.CrossRefGoogle Scholar
Urzay, J. 2018 Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annu. Rev. Fluid Mech. 50 (1), 593627.CrossRefGoogle Scholar
Von Neumann, J. 1963 Oblique Reflection of Shock Waves; Collecttion Works, vol. 6, pp. 238299. Pergamon Press.Google Scholar
Wheatley, V., Pullin, D. & Samtaney, R. 2005 Regular shock refraction at an oblique planar density interface in magnetohydrodynamics. J. Fluid Mech. 522, 179214.CrossRefGoogle Scholar
Whitham, G.B. 1958 On the propagation of shock waves through regions of non-uniform area or flow. J. Fluid Mech. 4 (4), 337360.CrossRefGoogle Scholar
Xue, L., Schrijer, F.F., Van Oudheusden, B., Wang, C., Shi, Z. & Cheng, K. 2020 Theoretical study on regular reflection of shock wave–boundary layer interactions. J. Fluid Mech. 899, A30.CrossRefGoogle Scholar
Yang, H. & Radulescu, M.I. 2021 Dynamics of cellular flame deformation after a head-on interaction with a shock wave: reactive Richtmyer–Meshkov instability. J. Fluid Mech. 923, A36.CrossRefGoogle Scholar
Zhai, Z., Li, W., Si, T., Luo, X., Yang, J. & Lu, X. 2017 Refraction of cylindrical converging shock wave at an air/helium gaseous interface. Phys. Fluids 29 (1), 016102.CrossRefGoogle Scholar
Zhai, Z., Wang, M., Si, T. & Luo, X. 2014 On the interaction of a planar shock with a light polygonal interface. J. Fluid Mech. 757, 800816.CrossRefGoogle Scholar
Zhang, E., Liao, S., Zou, L., Zhai, Z., Liu, J. & Li, X. 2024 Refraction of a triple-shock configuration at planar fast–slow gas interfaces. J. Fluid Mech. 984, A49.CrossRefGoogle Scholar