Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T21:57:46.291Z Has data issue: false hasContentIssue false

Quasi-static rheology of foams. Part 2. Continuous shear flow

Published online by Cambridge University Press:  31 August 2007

ALEXANDRE KABLA
Affiliation:
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
JULIEN SCHEIBERT
Affiliation:
Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS – UMR 8550, 24 Rue Lhomond, 75231 Paris Cedex 05, France
GEORGES DEBREGEAS
Affiliation:
Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS – UMR 8550, 24 Rue Lhomond, 75231 Paris Cedex 05, France

Abstract

The evolution of a bidimensional foam submitted to continuous quasi-static shearing isinvestigated both experimentally and numerically. We extract, from the images of the sheared foam, the plastic flow profiles as well as the local statistical properties of the stress field. When the imposed strain becomes larger than the yield strain, the plastic events develop large spatial and temporal correlations, and the plastic flow becomes confined to a narrow shear band. This transition and the steady-state regime of flow are investigated by first focusing on the elastic deformation produced by an elementary plastic event. This allows us to understand (i) the appearance of long-lived spatial heterogeneities of the stress field, which we believe are at the origin of the shear-banding transition, and (ii) the statistics of the dynamic fluctuations of the stress field induced by plastic rearrangements in the steady-state regime. Movies are available with the online versionof the paper.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdel Kader, A. el Kader, A. & Earnshaw, J. C. 1999 Shear-induced changes in two-dimensional foam. Phys. Rev. Lett. 82, 26102613.Google Scholar
Asipauskas, M., Aubouy, M., Glazier, J. A., Graner, F. & Jiang, Y. 2003 A texture tensor to quantify deformations: the example of two-dimensional flowing foams. Granular Matte. 5, 7174.CrossRefGoogle Scholar
Barabási, A.-L. & Stanley, H.-E. 1995 Fractal Concepts in Surface Growth. Cambridge University Press.CrossRefGoogle Scholar
Baret, J. C., Vandembroucq, D. & Roux, S. 2002 An extremal model for amorphous media plasticity. Phys. Rev. Lett. 89, 195506.CrossRefGoogle ScholarPubMed
Bragg, L. & Nye, J. F. 1947 A dynamical model of a crystal structure. Proc. R. Soc. Lond. A 190, 474482.Google Scholar
Bulatov, V. V. & Argon, A. S. 1994a A stochastic model for continuum elasto-plastic behavior: I. Numerical approach and strain localization. Modelling Simul. Mater. Sci. Engn. 2, 167184.CrossRefGoogle Scholar
Bulatov, V. V. & Argon, A. S. 1994b A stochastic model for continuum elasto-plastic behavior: II. A study of the glass transition and structural relaxation. Modelling Simul. Mater. Sci. Engn. 2, 185202.CrossRefGoogle Scholar
Bulatov, V. V. & Argon, A. S. 1994c A stochastic model for continuum elasto-plastic behavior: III. Plasticity in ordered versus disordered solids. Modelling Simul. Mater. Sci. Engn. 2, 203222.CrossRefGoogle Scholar
Cantat, I. & Delannay, R. 2005 Dissipative flows of 2D foams. Eur. Phys. J. E 18, 5567.Google ScholarPubMed
Chen, K., Bak, P. & Obukhov, S. P. 1991 Self-organized criticality in a crack-propagation model of earthquakes. Phys. Rev. A 43, 625.Google Scholar
Clancy, R. J., Janiaud, E., Weaire, D. & Hutzler, S. 2006 The response of 2D foams to continuous applied shear in a Couette rheometer. Eur. Phys. J. E 21, 123132.Google Scholar
Cohen-Addad, S., Hohler, R. & Khidas, Y. 2004 Origin of the slow linear viscoelastic response of aqueous foams. Phys. Rev. Lett. 93, 028302-1.CrossRefGoogle ScholarPubMed
Courty, S., Dollet, B., Elias, F., Heinig, P. & Graner, F. 2003 Two-dimensional shear modulus of a Langmuir foam. Europhys. Lett. 64, 709715.CrossRefGoogle Scholar
Cox, S., Weaire, D. & Glazier, J. A. 2004 The rheology of two-dimensional foams. Rheol. Act. 43, 442448.CrossRefGoogle Scholar
Debrégeas, G., Tabuteau, H. & diMeglio, J.-M. Meglio, J.-M. 2001 Deformation and flow of a two-dimensional foam under continuous shear. Phys. Rev. Lett. 87, 178305.CrossRefGoogle ScholarPubMed
Dennin, M. & Knobler, C. M. 1997 Experimental studies of bubble dynamics in a slowly driven monolayer foam. Phys. Rev. Lett. 78, 24852488.CrossRefGoogle Scholar
Dollet, B., Elias, F., Quilliet, C., Raufaste, C., Aubouy, M. & Graner, F. 2005 Two-dimensional flow of foam around an obstacle: force measurements. Phys. Rev. E 71, 031403.Google ScholarPubMed
Durand, M. & Stone, H. A. 2006 Relaxation time of the topological T1 process in a two-dimensional foam. Phys. Rev. Lett. 97, 226101.CrossRefGoogle Scholar
Durian, D. J. 1995 Foam mechanics at the bubble scale. Phys. Rev. Lett. 75, 4780.CrossRefGoogle ScholarPubMed
Durian, D. J., Weitz, D. A. & Pine, D. J. 1991 Multiple light-scattering probes of foam structure and dynamics. Scienc. 252, 686688.CrossRefGoogle ScholarPubMed
Eshelby, J. D. 1957 The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. A 241, 376.Google Scholar
Falk, M. L. & Langer, J. S. 1998 Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192.Google Scholar
Fenistein, D. & vanHecke, M. Hecke, M. 2003 Wide shear zones in granular bulk flow. Natur. 425, 256.CrossRefGoogle ScholarPubMed
Gopal, A. D. & Durain, D. J. 1995 Nonlinear bubble dynamics in a slowly driven foam. Phys. Rev. Lett. 75, 26102613CrossRefGoogle Scholar
Gopal, A. D. & Durain, D. J. 1999 Shear-induced ‘melting’ of an aqueous foam. JCI. 213, 169178.Google ScholarPubMed
Grimmett, G. R. & Stirzaker, D. R. 2001 Probability and Random Processes, 3rd edn. Oxford University Press.CrossRefGoogle Scholar
Hohler, R., Cohen-Addad, S. & Hoballah, H. 1997 Periodic nonlinear bubble motion in aqueous foam under oscillating shear strain. Phys. Rev. Lett. 79, 11541157.CrossRefGoogle Scholar
Howell, D., Behringer, R. P. & Veje, C. 1999 Stress fluctuations in a 2D granular Couette experiment: a continuous transition. Phys. Rev. Lett. 82, 52415244.CrossRefGoogle Scholar
Janiaud, E. & Graner, F. 2005 Foam in a two-dimensional Couette shear: a local measurement of bubble deformation. J. Fluid Mech. 532, 243267.CrossRefGoogle Scholar
Janiaud, E., Weaire, D. & Hutzler, S. 2006 Two-dimensional foam rheology with viscous drag. Phys. Rev. Lett. 97, 038302.CrossRefGoogle ScholarPubMed
Kabla, A. & Debrégeas, G. 2003 Local stress relaxation and shear-banding in a dry foam under shear. Phys. Rev. Lett. 90, 258303.CrossRefGoogle Scholar
Kabla, A. & Debrégeas, G. 2007 Quasi-static rheology of foams. Part 1. Oscillating strain. J. Fluid Mech. 587, 2344.CrossRefGoogle Scholar
Khan, S. A., Schnepper, C. A. & Armstrong, R. C. 1988 Foam rheology: III Measurement of shear flow properties. J. Rheol. 32, 6992.CrossRefGoogle Scholar
Kraynik, A. M., Reinelt, D. A. & vanSwol, F. Swol, F. 2003 Structure of random monodisperse foam. Phys. Rev. E 67, 031403.Google ScholarPubMed
Lauridsen, J., Twardos, M. & Dennin, M. 2002 Shear-induced stress relaxation in a two-dimensional wet foam. Phys. Rev. Lett. 89, 098303.CrossRefGoogle Scholar
Losert, W., Géminard, J.-C., Nasuno, S. & Gollub, J. P. 2000 Mechanisms for slow strengthening in granular materials. Phys. Rev. E 61, 40604068.Google ScholarPubMed
Maloney, C. & Lemaitre, A. 2004 Subextensive scaling in the athermal, quasistatic limit of amorphous matter in plastic shear flow. Phys. Rev. Lett. 93, 016001.CrossRefGoogle Scholar
Mueth, D. M., Debrégeas, G., Karczmar, G. S., Eng, P. J., Nagel, S. R. & Jaeger, H. M. 2000 Signatures of granular microstructure in dense shear flows. Natur. 406, 385389.CrossRefGoogle ScholarPubMed
Okuzono, T. & Kawasaki, K. 1995 Intermittent flow behavior of random foams: a computer experiment on foam rheology. Phys. Rev. E 1995, 12461253.Google Scholar
Picard, G., Ajdari, A., Lequeux, F. & Bocquet, L. 2004 Elastic consequences of a single plastic event: a step towards the microscopic modeling of the flow of yield stress fluids. Eur. Phys. J. E 15, 371381.Google ScholarPubMed
Picard, G., Ajdari, A., Lequeux, F. & Bocquet, L. 2005 Slow flows of yield stress fluids: complex spatiotemporal behavior within a simple elastoplastic model. Phys. Rev. E 71, 010501(R).Google ScholarPubMed
Pratt, E. & Dennin, M. 2003 Nonlinear stress and fluctuation dynamics of sheared disordered wet foam. Phys. Rev. E 67, 051402.Google ScholarPubMed
Rodts, S., Baudez, J. C. & Coussot, P. 2005 From “discrete” to “continuum” flow in foams. Europhys. Lett. 69, 636642.CrossRefGoogle Scholar
Shi, Y. & Falk, M. L. 2005 Strain localization and percolation of stable structure in amorphous solids. Phys. Rev. Lett. 95, 095502.CrossRefGoogle ScholarPubMed
Sollich, P., Lequeux, F., Hébraud, P. & Cates, M. E. 1997 Rheology of soft glassy materials. Phys. Rev. Lett. 78, 2020.CrossRefGoogle Scholar
Tewari, S., Schiemann, D., Durian, D. J., Knobler, C. M., Langer, S. A. & Liu, A. J. 1999 Statistics of shear-induced rearrangements in a two-dimensional model foam. Phys. Rev. E 60, 43854396.Google Scholar
Varnik, F., Bocquet, L., Barrat, J.-L. & Berthier, L. 2003 Shear localization in a model glass. Phys. Rev. Lett. 90, 095702.CrossRefGoogle Scholar
Wang, Y., Krishan, K. & Dennin, M. 2006 Impact of boundaries on the velocity profiles in bubble rafts. Phys. Rev. E 73, 031401.Google ScholarPubMed
Weaire, D. & Hutzler, S. 1999 The Physics of Foams. Clarendon Press, Oxford.Google Scholar
Weaire, D. & Kermode, J. P. 1983 Computer simulation of a two-dimensional soap froth I. Method and motivation. Phil. Mag. B 48, 245259.CrossRefGoogle Scholar

Kabla et al. supplementary movie (Part 2)

Movie 1. A simulated two-dimensional polydisperse foam is subjected to a quasi-static continuous shear strain by incrementally moving the lower rigid boundary. The rapid local neighbour-switching events among the bubbles, called T1 events, can be localized by the colour flashes.

Download Kabla et al. supplementary movie (Part 2)(Video)
Video 41.4 MB

Kabla et al. supplementary movie (Part 2)

Movie 1. A simulated two-dimensional polydisperse foam is subjected to a quasi-static continuous shear strain by incrementally moving the lower rigid boundary. The rapid local neighbour-switching events among the bubbles, called T1 events, can be localized by the colour flashes.

Download Kabla et al. supplementary movie (Part 2)(Video)
Video 3.7 MB

Kabla et al. supplementary movie (Part 2)

Movie 2. Evolution of the displacement field (top) and variations of the shear stress (bottom) during the first of the two avalanches described in the paper (figure 10). Large circles show the location of T1 events that have already occurred, and small circles correspond to remaining T1 events until the avalanche is complete. The red colour in the stress variation map indicates an increase of the shear stress whereas the blue colour corresponds to a decrease of the shear stress.

Download Kabla et al. supplementary movie (Part 2)(Video)
Video 2.3 MB

Kabla et al. supplementary movie (Part 2)

Movie 2. Evolution of the displacement field (top) and variations of the shear stress (bottom) during the first of the two avalanches described in the paper (figure 10). Large circles show the location of T1 events that have already occurred, and small circles correspond to remaining T1 events until the avalanche is complete. The red colour in the stress variation map indicates an increase of the shear stress whereas the blue colour corresponds to a decrease of the shear stress.

Download Kabla et al. supplementary movie (Part 2)(Video)
Video 1.4 MB

Kabla et al. supplementary movie (Part 2)

Movie 3. Same as movie 2 but for the second avalanche.

Download Kabla et al. supplementary movie (Part 2)(Video)
Video 1.2 MB

Kabla et al. supplementary movie (Part 2)

Movie 3. Same as movie 2 but for the second avalanche.

Download Kabla et al. supplementary movie (Part 2)(Video)
Video 678.9 KB