Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T21:53:03.219Z Has data issue: false hasContentIssue false

Quasi-static rheology of foams. Part 1. Oscillating strain

Published online by Cambridge University Press:  31 August 2007

ALEXANDRE KABLA
Affiliation:
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
GEORGES DEBREGEAS
Affiliation:
Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS – UMR 8550, 24 Rue Lhomond, 75231 Paris Cedex 05, France

Abstract

A quasi-static simulation is used to study the mechanical response of a disordered bidimensional aqueous foam submitted to an oscillating shear strain. The application of shear progressively extends the elastic domain, i.e. the strain range within which no plastic process occurs. It is associated with the development of an irreversible normal stress difference, and a decrease in the shear modulus, which are both signatures of the appearance of anisotropy in the film network. Beyond this mechanical measurement, the evolutionof the structural properties of the foam is investigated. We focus in particular on the energy E0 defined as the minimum line-length energy under zero shear stress. For strainamplitude less than ~0.5, this quantity is found to decay with the number of applied cycles as a result of the curing of topological defects. However, for higher strain amplitude, plastic events appear to increase the structural disorder and tend to gather near the shearing walls. This process is a precursor of the shear-banding transition observed in fully developed flows, which will be studied in the companion paper. Movies are available with the online version of the paper.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdel Kader, A. el Kader, A. & Earnshaw, J. C. 1999 Shear-induced changes in two-dimensional foam. Phys. Rev. Lett. 82, 26102613.Google Scholar
Alexander, S. 1998 Amorphous solids: their structure, lattice dynamics and elasticity. Phys. Rep. 296, 65236.CrossRefGoogle Scholar
Barnes, H.A., Hutton, J.F. & Walters, K., An %Introduction to Rheology, 2003, vol. 3, Rheology series, Elsevier.Google Scholar
Baumberger, T. & Caroli, C. 2006 Solid friction from stick–slip to pinning and aging. Adv. Phys. 55, 279348.CrossRefGoogle Scholar
Bragg, L. & Nye, J. F. 1947 A dynamical model of a crystal structure. Proc. R. Soc. Lond. A. 190, 474482.Google Scholar
Brakke, K. 1992 The surface evolver. Expl Math. 1, 141165.CrossRefGoogle Scholar
Bulatov, V. V. & Argon, A. S. 1994a A stochastic model for continuum elasto-plastic behavior: I. Numerical approach and strain localization. Modelling Simul. Mater. Sci. Engng. 2, 167184.CrossRefGoogle Scholar
Bulatov, V. V. & Argon, A. S. 1994b A stochastic model for continuum elasto-plastic behavior: II. A study of the glass transition and structural relaxation. Modelling Simul. Mater. Sci. Engn. 2, 185202.CrossRefGoogle Scholar
Bulatov, V. V. & Argon, A. S. 1994c A stochastic model for continuum elasto-plastic behavior: III. Plasticity in ordered versus disordered solids. Modelling Simul. Mater. Sci. Engn. 2, 203222.CrossRefGoogle Scholar
Bureau, L., Baumberger, T. & Caroli, C. 2002 Rheological aging and rejuvenation in solid friction contacts. Eur. Phys. J. 8, 331337.Google ScholarPubMed
Cantat, I. & Delannay, R. 2005 Dissipative flows of 2D foams. Eur. Phys. J. E. 18, 5567.CrossRefGoogle ScholarPubMed
Debrégeas, G., Tabuteau, H. & diMeglio, J.-M. Meglio, J.-M. 2001 Deformation and flow of a two-dimensional foam under continuous shear. Phys. Rev. Lett. 87, 178305.CrossRefGoogle ScholarPubMed
Dennin, M. & Knobler, C. M. 1997 Experimental studies of bubble dynamics in a slowly driven monolayer foam. Phys. Rev. Lett. 78, 24852488.CrossRefGoogle Scholar
Derec, C., Ajdari, A. & Lequeux, F. 2001 Rheology and aging: a simple approach. Eur. Phys. J. E. 4, 355361.CrossRefGoogle Scholar
Dollet, B., Elias, F., Quilliet, C., Raufaste, C., Aubouy, M. & Graner, F. 2005 Two-dimensional flow of foam around an obstacle: force measurements. Phys. Rev. E. 71, 031403.CrossRefGoogle ScholarPubMed
Falk, M. L. & Langer, J. S. 1998 Dynamics of viscoplastic deformation in amorphous solids Phys. Rev. E. 57, 7192.CrossRefGoogle Scholar
Fisher, D. S., Fisher, M. P. A. & Huse, D. A. 1991 Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors. Phys. Rev. B. 43, 130159.CrossRefGoogle ScholarPubMed
Herdtle, T. & Aref, H. 1992 Numerical experiments on two-dimensional foam. J. Fluid Mech. 241, 233.CrossRefGoogle Scholar
Hohler, R. & Cohen-Addad, S. 2005 Rheology of liquid foam. J. Phys.: Condensed Matte. 17, R1041–R1069.Google Scholar
Hohler, R., Cohen-Addad, S. & Asnacios, A. 1999 Rheological memory effect in aqueous foam. Europhys. Lett. 48, 9398.CrossRefGoogle Scholar
Hohler, R., Cohen-Addad, S. & Labiausse, V. 2004 Constitutive equation to describe the non-linear elastic response of aqueous foams and concentrated emulsions. J. Rheol. 48, 679690.CrossRefGoogle Scholar
Janiaud, E. & Graner, F. 2005 Foam in a two-dimensional Couette shear: a local measurement of bubble deformation. J. Fluid Mech. 532, 243267.CrossRefGoogle Scholar
Janiaud, E., Weaire, D. & Hutzler, S. 2006 Two-dimensional foam rheology with viscous drag. Phys. Rev. Lett. 97, 038302.CrossRefGoogle ScholarPubMed
Jiang, Y., Swart, P. J., Saxena, A., Asipauskas, M. & Glazier, J. A. 1999 Hysteresis and avalanches in two-dimensional foam rheology simulations. Phys. Rev. E 59, 5819.Google ScholarPubMed
Kabla, A. & Debrégeas, G. 2003 Local stress relaxation and shear-banding in a dry foam under shear. Phys. Rev. Lett. 90, 258303.CrossRefGoogle Scholar
Kabla, A, Scheibert, J. & Debrégeas, G. 2007 Quasi-static rheology of foams Part 2. Continuous shear flow. J. Fluid Mech. 587, 4572.CrossRefGoogle Scholar
Khan, S. A. & Armstrong, R. C. 1986 Foam rheology: I Theory for dry foams. J. Non. Newtonian Fluid Mech. 22, 122.CrossRefGoogle Scholar
Khan, S. A., Schnepper, C. A. & Armstrong, R. C. 1988 Foam rheology: III Measurement of shear flow properties. J. Rheol. 32, 6992.CrossRefGoogle Scholar
Kraynik, A. M., Reinelt, D. A. & vanSwol, F. Swol, F. 2003 Structure of random monodisperse foam. Phys. Rev. E. 67, 031403.CrossRefGoogle ScholarPubMed
Larson, R. G. 1997 The elastc stress in ‘film fluids’. J. Rheol. 41, 365372.CrossRefGoogle Scholar
Lauridsen, J., Twardos, M. & Dennin, M. 2002 Shear-induced stress relaxation in a two-dimensional wet foam. Phys. Rev. Lett. 89, 098303.CrossRefGoogle Scholar
Liu, A. & Nagel, S. R. 1998 Nonlinear dynamics. Jamming is not just cool any more. Natur. 396, 2122.CrossRefGoogle Scholar
Okuzono, T. & Kawasaki, K. 1995 Intermittent flow behavior of random foams: a computer experiment on foam rheology. Phys. Rev. E. 51, 12461253.CrossRefGoogle ScholarPubMed
Okuzono, T., Kawasaki, K. & Nagai, T. 1993 Rheology of random foams. J. Rheol. 37, 571.CrossRefGoogle Scholar
Princen, H. M. 1983 Rheology of foams and highly concentrated emulsions: I. Elastic properties and yield stress of a cylindrical model system. J. Colloid Interface Sci. 91, 160175.CrossRefGoogle Scholar
Reinelt, D. A. 1993 Simple shearing flow of three-dimensional foams and highly concentrated emulsions with planar films. J. Rheo. 37, 11171139.CrossRefGoogle Scholar
Reinelt, D. A. & Kraynik, A. M. 1996 Simple shearing flow of a dry Kelvin soap foam. J. Fluid Mech. 311, 327.CrossRefGoogle Scholar
Reinelt, D. A. & Kraynik, A. M. 2000 Simple shearing flow of dry soap foams with tetrahedrally close-packed structure. J. Rheol. 44, 453.CrossRefGoogle Scholar
Rouyer, F., Cohen-Addad, S., Vignes-Adler, M. & Holler, R. 2003 Dynamics of yielding observed in a three-dimensiomal aqueous dry foam. Phys. Rev. E. 67, 021405.CrossRefGoogle Scholar
Rouyer, F., Cohen-Addad, S. & Holler, R. 2005 Is the yield stress of aqueous foam a well-defined quantity? Colloids Surfaces A. 263, 111116.CrossRefGoogle Scholar
Sollich, P., Lequeux, F., Hébraud, P. & Cates, M. E. 1997 Rheology of soft glassy materials. Phys. Rev. Lett. 78, 2020.CrossRefGoogle Scholar
Viasnoff, V. & Lequeux, F. 2002 Rejuvenation and overaging in a colloidal glass under shear. Phys. Rev. Lett. 89, 065701.CrossRefGoogle Scholar
Vincent-Bonnieu, S., Hohler, R. & Cohen-Addad, S. 2006 Slow viscoelastic relaxation and aging in aqueous foam. Eoruphys. Lett. 74, 533539.CrossRefGoogle Scholar
Wang, Y., Krishan, K. & Dennin, M. 2006 Impact of boundaries on the velocity profiles in bubble rafts. Phys. Rev. E. 73, 031401.CrossRefGoogle ScholarPubMed
Weaire, D. & Hutzler, S. 1999 The Physics of Foams. Clarendon.Google Scholar
Weaire, D. & Kermode, J. P. 1983 Computer simulation of a two-dimensional soap froth I. Method and motivation. Phil. Mag. B. 48, 245259.CrossRefGoogle Scholar
Weaire, D. & Kermode, J. P. 1984 Computer simulation of a two-dimensional soap froth II. Analysis of results. Phil. Mag. B. 50, 379395.CrossRefGoogle Scholar

Kabla and Debregeas supplementary movie

Movie 1. A simulated two-dimensional polydisperse foam is subjected to a quasi-static oscillating imposed shear strain of maximum amplitude 0.3, by incrementally moving the lower rigid boundary. The rapid local neighbour-switching events among the bubbles, called T1 events, can be localized by the colour flashes.

Download Kabla and Debregeas supplementary movie(Video)
Video 13.8 MB

Kabla and Debregeas supplementary movie

Movie 1. A simulated two-dimensional polydisperse foam is subjected to a quasi-static oscillating imposed shear strain of maximum amplitude 0.3, by incrementally moving the lower rigid boundary. The rapid local neighbour-switching events among the bubbles, called T1 events, can be localized by the colour flashes.

Download Kabla and Debregeas supplementary movie(Video)
Video 894.8 KB

Kabla and Debregeas supplementary movie

Movie 2. As movie 1 but for maximum strain amplitude 0.45

Download Kabla and Debregeas supplementary movie(Video)
Video 51.9 MB

Kabla and Debregeas supplementary movie

Movie 2. As movie 1 but for maximum strain amplitude 0.45

Download Kabla and Debregeas supplementary movie(Video)
Video 3.3 MB

Kabla and Debregeas supplementary movie

Movie 3. As movie 1 but for maximum strain amplitude 1.0

Download Kabla and Debregeas supplementary movie(Video)
Video 99 MB

Kabla and Debregeas supplementary movie

Movie 3. As movie 1 but for maximum strain amplitude 1.0

Download Kabla and Debregeas supplementary movie(Video)
Video 6.1 MB