Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-29T14:41:00.493Z Has data issue: false hasContentIssue false

A proposed model of the bursting process in turbulent boundary layers

Published online by Cambridge University Press:  29 March 2006

G. R. Offen
Affiliation:
Department of Mechanical Engineering, Stanford University, California 94305 Present address: Acurex Corp., Mountain View, California.
S. J. Kline
Affiliation:
Department of Mechanical Engineering, Stanford University, California 94305

Abstract

A model is proposed which attempts to explain the complete ‘burst cycle’. This model views the wall streak as a sub-boundary layer, within the conventionally defined boundary layer, and the lift-up stage of bursting either as an upwelling motion of this sub-boundary layer which is similar to a local, convected separation or, equivalently, as the consequence of a vortex roll-up. ‘Sweeps’ are thought to represent the passage of a previous burst from further upstream. They appear either to impress on the wall streak the temporary adverse pressure gradient required to bring about its lifting or, alternatively, to provide the outer vortex which rolls up with the vortex associated with the wall streak. The model is also used to explain how the interactions between a burst and a sweep bring about (i) breakup, as well as (ii) new wall streaks further downstream.

Arguments are presented to demonstrate that the three kinds of oscillatory growth reported by Kim, Kline & Reynolds (1971) may be associated with just one type of flow structure: the stretched and lifted vortex described by Kline et al. (1967).

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, P. S., Kays, W. M. & Moffat, R. J. 1972 Thermosci. Div., Mech. Engng Dept., Stanford University, Rep. HMT-15.
Bakewell, H. P. & Lumley, J. L. 1967 Phys. Fluids, 10, 1880.
Bradshaw, P. 1967 J. Fluid Mech. 29, 625645.
Bradshaw, P. 1970 Experimental Fluid Mechanics, 2nd edn, chap. 6. Pergamon.
Bradshaw, P. 1971 An Introduction to Turbulence and Its Measurement. Pergamon.
Bremhorst, K. & Walker, T. B. 1973 J. Fluid Mech. 61, 173186.
Corino, E. R. & Brodkey, R. S. 1969 J. Fluid Mech. 37, 130.
Falco, R. E. 1974 A.I.A.A. Paper, no. 74–99 (12th A.I.A.A. Aerospace Conf.).
Fiedler, H. & Head, M. E. 1966 J. Fluid Mech. 25, 719736.
Gupta, A. K., Laufer, J. & Kaplan, R. E. 1971 J. Fluid Mech. 50, 493512.
Kaplan, R. E. & Laufer, J. 1968 Proc. 12th Int. Congr. Appl. Mech., p. 236.
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 J. Fluid Mech. 50, 133160.
Klebanoff, P. S. 1956 N.A.C.A. Rep. no. 1237. (See also N.A.C.A. Tech. Note, no. 3178 (1954).)
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 J. Fluid Mech. 30, 741774.
Kline, S. J. & Runstadler, P. W. 1959 J. Appl. Mech., E 26, 166170.
Kline, S. J., Sovran, G., Morkovin, M. V. & Cockrell, D. J. 1969 Proc. Comp. Turbulent Boundary Layers: 1968 AFOSR-IFP-Stanford Conf. vol. 1. Thermosci. Div., Mech. Engng Dept., Stanford University.
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 J. Fluid Mech. 41, 283325.
Lahey, R. T. & Kline, S. J. 1971 Thermosci. Div., Mech. Engng Dept., Stanford University, Rep. MD-26.
Laufer, J. & Badri narayanan, M. E. 1971 Phys. Fluids, 14, 182183.
Loudenback, L. D. & Abbott, D. E. 1973 Thermal Sci. Propulsion Center, School Mech. Engng, Purdue University, Tech. Rep. CFMTR-73-1.
Lu, S. S. & Willmarth, W. W. 1973 J. Fluid Mech. 60, 481511.
Maskell, E. C. 1955 Roy. Aircraft Establishment, Farnborough, Aero. Rep. no. 2565.
Meek, R. L. 1972 A.I.Ch.E. J. 18, 854855.
Morkovin, M. V. 1972 Dtsche Luft Raumfahrt Forsch. no. 72–27. (See also Illinois Inst. Tech. AFOSR-TR-72-0908.)
Nychas, S. G., Hershey, H. C. & Brodkey, R. S. 1973 J. Fluid Mech. 61, 513540.
Offen, G. R. & Kline, S. J. 1973 Thermosci. Div., Mech. Engng Dept., Stanford University, Rep. MD-31.
Offen, G. R. & Kline, S. J. 1974 J. Fluid Mech. 62, 223.
Rao, N. K., Narasimha, R. & Badri narayanan, M. E. 1971 J. Fluid Mech. 48, 339352.
Reynolds, W. C. 1974 A.I.A.A. Paper, no. 74–556.
Runstadler, P. W., Kline, S. J. & Reynolds, W. C. 1963 Thermosci. Div., Mech. Engng Dept., Stanford University, Rep. MD-8.
Schraub, F. A. & Kline, S. J. 1965 Thermosci. Div., Mech. Engng Dept., Stanford University, Rep. MD-12.
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence, p. 21. MIT Press.
Theodorsen, T. 1952 Proc. 2nd Midwestern Conf. Fluid Mech., The Ohio State University, p. 1.
Townsend, A. A. 1956 The Structure of Turbulent Shear Flows. Cambridge University Press.
Tu, B. & Willmarth, W. W. 1966 University of Michigan, Coll. Engng Rep. no. 02920-3-T.
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 J. Fluid Mech. 54, 3948.
Willmarth, W. W. & Lu, S. S. 1972 J. Fluid Mech. 55, 6592.
Winant, C. D. 1973 Ph.D. dissertation, Aerospace Engineering, University of Southern California.
York, R. E. & Abbott, D. E. 1973 Thermal Sci. Propulsion Center, School Mech. Engng, Purdue University, Tech. Rep. CFMTR-73-2.