Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T18:31:03.591Z Has data issue: false hasContentIssue false

The propagation of sound in relaxing gases in tubes at low frequencies

Published online by Cambridge University Press:  28 March 2006

D. H. Smith
Affiliation:
Physics Department, Woolwich Polytechnic, London, S.E. 18
H. J. Wintle
Affiliation:
Physics Department, Woolwich Polytechnic, London, S.E. 18 Present address: Physics Branch, Royal Military College of Science, Shrivenham, Swindon, Wilts.

Abstract

The frequency dependence of the velocity and attenuation of sound waves in a gas which undergoes vibrational relaxation have been investigated theoretically. At low audible frequencies the attenuations due to viscosity, thermal conduction and relaxationin the gas, add linearly, while the velocity is the relaxation velocity diminished by the Helmholtz-Kirchhoff factor. The relations have been confirmed experimentally, and the free gas velocities of sound at zero frequency, one atmosphere pressure and 30 °C, found for carbon dioxide, air and oxygen, are 270·57 ± 0·04 m sec−1, 349·18 ± 0·02 m sec−1 and 331·33 ± 0·03 m sec−1, respectively. The corresponding specific heats are Cp/R = 4·537 ± 0·008 for carbon dioxide and Cp/R = 3·547 ± 0·003 for oxygen.

Type
Research Article
Copyright
© 1960 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbey, R. L. & Barlow, G. E. 1948 Aust. J. Sci. Res. A 1, 175.
Beattie, J. A. & Stockmayer, W. H. 1940 Rep. Progr. Phys. 7, 195.
Bhatia, A. B. 1957 J. Acoust. Sco. Amer. 29, 823.
Birge, R. T. 1941 Rev. Mod. Phys. 13, 233.
Harlow, R. G. 1954 Ph. D. Thesis, London.
Henry, P. S. H. 1932 Proc. Camb. Phil. Soc. 28, 249.
Hoge, H. J. 1950 J. Res. Nat. Bur. Stand. 44, 321.
Katz, L., Leverton, W. F. & Woods, S. B. 1949 Canad. J. Phys. 27 A, 39.
Keyes, F. G. 1952 Trans. Amer. Soc. Mech. Engrs, 73, 589.
Kistiakowsky, G. B. & Rice, W. W. 1939 J. Chem. Phys. 7, 281.
Knötzel, H. & Knötzel, L. 1948 Ann. Phys. (6)2, 393.
Koehler, W. F. 1950 J. Chem. Phys. 18, 465.
Lapshina, M. I. & Khomyakov, K. G. 1951 Dokl. Akad. Nauk SSSR, 2, 35.
Lee, T. A. 1957 Ph.D. Thesis, London.
Masi, J. F. & Petkof, B 1952 J. Res. Nat. Bur. Stand. 48, 179.
Meyers, C. H. 1948 J. Res. Nat. Bur. Stand, 40, 457.
Michels, A. & Michels, C. 1937 Proc. Roy. Soc. A, 160, 348.
Rayleigh, Lord 1994 Theory of Sound. London: Macmillan.
Sette, D. & Hubbard, J. C. 1953 J. Acoust. Soc. Amer, 25, 994.
Smith, D. H. 1945 Proc. Phyc. Soc. 57, 534.
Smith, P. W. 1952 J. Acoust. Soc. Amer. 24, 687.
Wacker, P. F., Cheney, R. K. & Scott, R. B. 1947 J. Res. Nat. Bur. Stand. 38, 651.
Weston D. E. 1953 Proc. Phys. Soc. B, 66, 695.
Wichers, E. 1954 J. Amer. Chem. Soc. 76, 2033.
Wintle, H. J. 1959a M.Sc. Thesis, London.
Wintle, H. J. 1959b Nature, Lond. 184, 2007.
Woolley, H. W. 1948 J. Res. Nat. Bur. Stand. 40, 163.
Woolley, H. W. 1953 Canad. J. Phys. 31, 604.
Woolley, H. W. 1954 J. Res. Nat. Bur. Stand. 52, 289.