Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T06:27:01.801Z Has data issue: false hasContentIssue false

Pressure-driven flow of a thin viscous sheet

Published online by Cambridge University Press:  26 April 2006

B. W. Van De Fliert
Affiliation:
Mathematical Institute, 24–29 St Giles’, Oxford, UK
P. D. Howell
Affiliation:
Mathematical Institute, 24–29 St Giles’, Oxford, UK
J. R. Ockenden
Affiliation:
Mathematical Institute, 24–29 St Giles’, Oxford, UK

Abstract

Systematic asymptotic expansions are used to find the leading-order equations for the pressure-driven flow of a thin sheet of viscous fluid. Assuming the fluid geometry to be slender with non-negligible curvatures, the Navier–Stokes equations with appropriate free-surface conditions are simplified to give a ‘shell-theory’ model. The fluid geometry is not known in advance and a time-dependent coordinate frame has to be employed. The effects of surface tension, gravity and inertia can also be incorporated in the model.

Type
Research Article
Copyright
© 1995 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aris, R. 1962 Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Prentice-Hall (reprinted 1989 Dover).
Buckmaster, J. D. & Nachman, A. 1978 The buckling and stretching of a viscida II. Effects of surface tension. Q. J. Mech. Appl. Maths 31, 157168.Google Scholar
Buckmaster, J. D., Nachman, A. & Ting, L. 1975 The buckling and stretching of a viscida. J. Fluid Mech. 69, 120.Google Scholar
Burley, D. M. & Graham, S. J. 1991 The blowing of thin films into moulds with applications in the glass container industry. Math. Fin. Elem. Appl. 7, 279286.Google Scholar
Cao, B. S. & Campbell, G. A. 1990 Viscoplastic—elastic modeling of tubular blown film processing. AICHE J. 36, 420430.Google Scholar
Dewynne, J. N., Howell, P. D. & Wilmott, P. 1994 Slender viscous fibres with inertia and gravity. Q. J. Mech. Appl. Maths 47, 541555.Google Scholar
Dewynne, J. N., Ockendon, J. R. & Wilmott, P. 1989 On a mathematical model for fibre tapering. SIAM J. Appl. Maths 49, 983990.Google Scholar
Dewynne, J. N., Ockendon, J. R. & Wilmott, P. 1992 Systematic derivation of the leading-order equations for extensional flows in slender geometries. J. Fluid Mech. 244, 323338.Google Scholar
Geyling, F. T. 1976 Basic fluid dynamic considerations in the drawing of optical fibres. Bell. Sys. Tech. J. 55, 10111056.Google Scholar
Geyling, F. T. & Homsy, G. M. 1980 Extensional instabilities of the glass fibre process. Glass Tech. 21, 95102.Google Scholar
Graham, S. J. 1987 Mathematical modelling of glass flow in container manufacture. PhD thesis, University of Sheffield.
Graham, S. J., Burley, D. M. & Carling, J. C. 1992 Fluid flow in thin films using finite elements. Math. Engng Ind. 3, 229246.Google Scholar
Gupta, R. K., Metzner, A. B. & Wissbrun, K. F. 1982 Modeling of polymeric film-blowing processes. Polymer Engng Sci. 22, 172181.Google Scholar
Howell, P. D. 1994 Extensional thin layer flows. DPhil thesis, Oxford University.
Howell, P. D. 1995 Models for slender viscous sheets. E. J. Appl. Maths (submitted).Google Scholar
Ida, M. P. & Miksis, M. J. 1995 Dynamics of a lamella in a capillary tube. SIAM J. Appl. Maths 55, 2357.Google Scholar
Kreyszig, E. 1959 Differential Geometry. University of Toronto Press (reprinted 1991 Dover).
Landau, L. D. & Lifschitz, E. M. 1959 Theory of Elasticity. Pergamon.
Love, a. e. h. 1927 a treatise on the mathematical theory of elasticity. cambridge university press.
Matovich, M. A. & Pearson, J. R. A. 1969 Spinning a molten thread line. Indust. Engng Chem. Fundam. 8, 512519.Google Scholar
Pearson, J. R. A. 1985 Mechanics of Polymer Processing. Elsevier Applied Science.
Pearson, J. R. A. & Matovich, M. A. 1969 Spinning a molten thread line. Indust. Engng Chem. Fundam. 8, 605609.Google Scholar
Pearson, J. R. A. & Petrie, C. J. S. 1970a The flow of a tubular film. Part 1. Formal mathematical representation. J. Fluid Mech. 40, 119.Google Scholar
Pearson, J. R. A. & Petrie, C. J. S. 1970b The flow of a tubular film. Part 2. Interpretation of the model and discussion of solutions. J. Fluid Mech. 42, 609625.Google Scholar
Rosenhead, L. 1963 Laminar Boundary Layers. Clarendon.
Saxelby, C. & Aitchison, J. M. 1986 A numerical model of the glass sheet and fibre updraw process. In dustrial Numerical Analysis (ed. S. McKee & C. M. Elliot). Oxford University Press.
Schultz, W. W. & Davis, S. H. 1982 One-dimensional liquid fibers. J. Rheol. 26, 331345.Google Scholar
Shah, F. T. & Pearson, J. R. A. 1972 On the stability of non—isothermal fibre spinning. Indust. Engng Chem. Fundam. 11, 145149.Google Scholar
Timoshenko, S. P. & Woinowsky-Krieger, S. 1959 Theory of Shells and Plates. McGraw Hill.
Wilmott, P. 1989 The stretching of a thin viscous inclusion and the drawing of glass sheets. Phys. Fluids A 7, 10981103.Google Scholar
Yarin, A. L., Gospodinov, P. & Roussinov, V. I. 1994 Stability loss and sensitivity in hollow—fiber drawing. Phys. Fluids 6, 14541463.Google Scholar
Yeow, Y. L. 1976 Stability of tubular film flow: a model of the film—blowing process. J. Fluid Mech. 75, 577591.Google Scholar