Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-07T09:30:47.628Z Has data issue: false hasContentIssue false

Pressure statistics in self-similar freely decaying isotropic turbulence

Published online by Cambridge University Press:  07 February 2013

Marcello Meldi*
Affiliation:
Institut Jean Le Rond d’Alembert, UMR 7190, 4 Place Jussieu, Case 162, Université Pierre et Marie Curie, Paris 6, F-75252 Paris CEDEX 5, France
Pierre Sagaut
Affiliation:
Institut Jean Le Rond d’Alembert, UMR 7190, 4 Place Jussieu, Case 162, Université Pierre et Marie Curie, Paris 6, F-75252 Paris CEDEX 5, France
*
Email address for correspondence: [email protected]

Abstract

The time evolution of pressure statistics in freely decaying homogeneous isotropic turbulence (HIT) is investigated via eddy-damped quasi-normal Markovian (EDQNM) computations. The present results show that the time decay rate of pressure-based statistical quantities, such as pressure variance and pressure gradient variance, are sensitive to the breakdown of permanence of large eddies. New formulae for the associated time-decay exponents are proposed, which extend previous relations proposed in Lesieur, Ossia & Metais (Phys. Fluids, vol. 11, 1999, p. 1535). Particular attention is paid to finite-Reynolds-number (FRN) effects on the pressure spectrum and pressure statistics. The results also suggest that $R{e}_{\lambda } = O(1{0}^{4} )$ must be considered to observe a one-decade inertial range in the pressure spectrum with Kolmogorov $- 7/ 3$ scaling. This threshold value is larger than almost all existing direct numerical simulation (DNS) and experimental data, justifying the discussion about other possible scaling laws. The $- 5/ 3$ slope reported in some DNS data is also recovered by the EDQNM model, but it is observed to be a low-Reynolds-number effect. Another important result is that FRN effects yield a departure from asymptotic theoretical behaviours which appear similar to some effects attributed to intermittency by most authors. This is exemplified by the ratio between pressure-based and velocity-based Taylor microscales. Therefore, high-Reynolds-number DNS or experiments such that $R{e}_{\lambda } = O(1{0}^{4} )$ would be required in order to remove FRN effects and to analyse pure intermittency effects.

Type
Rapids
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1951 Pressure fluctuations in isotropic turbulence. Proc. Camb. Phil. Soc. 47, 359374.CrossRefGoogle Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Bos, W. J. T., Chevillard, L., Scott, J. F. & Rubinstein, R. 2012 Reynolds number effect on the velocity increment skewness in isotropic turbulence. Phys. Fluids 24, 015108.CrossRefGoogle Scholar
Cao, N., Chen, S. & Doolen, G. D. 1999 Statistics and structures of pressure in isotropic turbulence. Phys. Fluids 11, 2235.CrossRefGoogle Scholar
Comte-Bellot, G. & Corrsin, S. 1966 The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657682.CrossRefGoogle Scholar
Davidson, P. A. 2004 Turbulence. An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Donzis, D. A., Sreenivasan, K. R. & Yeung, P. K. 2012 Some results on the Reynolds number scaling of pressure statistics in isotropic turbulence. Physica D 241, 164168.CrossRefGoogle Scholar
Eyink, G. L. & Thomson, D. J. 2000 Free decay of turbulence and breakdown of self-similarity. Phys. Fluids 12, 477479.CrossRefGoogle Scholar
Gotoh, T. & Fukayama, D. 2001 Pressure spectrum in homogeneous turbulence. Phys. Rev. Lett. 86, 37753778.CrossRefGoogle ScholarPubMed
Gotoh, T. & Rogallo, R. S. 1999 Intermittency and scaling of pressure at small scales in forced isotropic turbulence. J. Fluid Mech. 396, 257285.CrossRefGoogle Scholar
Heisenberg, W. 1948 Zur statischen Theorie der Turbulenz. Z. Phys. 124, 628657.CrossRefGoogle Scholar
Hill, R. J. & Wilczak, J. M. 1995 Pressure structure functions and spectra for locally isotropic turbulence. J. Fluid Mech. 296, 247269.CrossRefGoogle Scholar
Hinze, J. O. 1975 Turbulence. McGraw-Hill.Google Scholar
Kim, J. & Antonia, R. A. 1993 Isotropy of the small scales of turbulence at low Reynolds number. J. Fluid Mech. 251, 219238.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 On the degeneration of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk SSSR 31, 538541.Google Scholar
Lesieur, M. 2008 Turbulence in Fluids. Springer.CrossRefGoogle Scholar
Lesieur, M., Ossia, S. & Metais, O. 1999 Infrared pressure spectra in two- and three-dimensional isotropic incompressible turbulence. Phys. Fluids 11, 1535.CrossRefGoogle Scholar
Meldi, M. & Sagaut, P. 2012 On non-self similar regimes in homogeneous isotropic turbulence decay. J. Fluid Mech. 711, 364393.CrossRefGoogle Scholar
Meldi, M., Sagaut, P. & Lucor, D. 2011 A Stochastic view of isotropic turbulence decay. J. Fluid Mech. 668, 351362.CrossRefGoogle Scholar
Orszag, S. A. 1970 Analytical theories of turbulence. J. Fluid Mech. 41, 363386.CrossRefGoogle Scholar
Pearson, B. R. & Antonia, R. A. 2001 Reynolds-number dependence of turbulent velocity and pressure increments. J. Fluid Mech. 444, 343382.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Pumir, A. 1994 A numerical study of pressure fluctuations in three-dimensional, incompressible, homogeneous, isotropic turbulence. Phys. Fluids 6, 2071.CrossRefGoogle Scholar
Sagaut, P. & Cambon, C. 2008 Homogeneous Turbulence Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Schumann, U. & Patterson, G. S. 1978 Numerical study of pressure and velocity fluctuations in nearly isotropic turbulence. J. Fluid Mech. 88, 685709.CrossRefGoogle Scholar
Taylor, G. I. 1935 Statistical Theory of Turbulence. Proc. R. Soc. Lond. A 151, 421444.CrossRefGoogle Scholar
Tchoufag, J., Sagaut, P. & Cambon, C. 2012 Spectral approach to finite Reynolds number effects on Kolmogorov $4/ 5$ law in isotropic turbulence. Phys. Fluids 24, 015107.CrossRefGoogle Scholar
Tsuji, Y. & Ishihara, T. 2003 Similarity scaling of pressure fluctuation in turbulence. Phys. Rev. E 68, 026309.CrossRefGoogle ScholarPubMed
Uberoi, M. S. & Corrsin, S. 1953 Diffusion of heat from a line source in isotropic turbulence. NACA Rep. 1142.Google Scholar
Vedula, P. & Yeung, P. K. 1999 Similarity scaling of acceleration and pressure statistics in numerical simulations of isotropic turbulence. Phys. Fluids 11, 1208.CrossRefGoogle Scholar
Yeung, P. K., Donzis, D. A. & Sreenivasan, K. R. 2012 Dissipation, enstrophy and pressure statistics in turbulence simulations at high Reynolds numbers. J. Fluid Mech. 700, 515.CrossRefGoogle Scholar