Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T21:33:44.764Z Has data issue: false hasContentIssue false

Pressure gradient induced generation of microbubbles

Published online by Cambridge University Press:  06 August 2015

A. Evangelio
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingenería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n 41092, Sevilla, Spain
F. Campo-Cortés
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingenería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n 41092, Sevilla, Spain
J. M. Gordillo*
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingenería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n 41092, Sevilla, Spain
*
Email address for correspondence: [email protected]

Abstract

We provide a detailed physical description of the bubble formation processes taking place in a type of flow where the liquid pressure gradient can be straightforwardly controlled. The analysis, which is supported by an exhaustive experimental study in which the liquid viscosity is varied by three orders of magnitude, provides closed expressions for both the bubbling frequencies and the bubble diameters. Different equations are obtained depending on the values of the three dimensionless parameters characterizing this physical situation, namely the Weber and Reynolds numbers and the gas to liquid flow rate ratio. Since both the inertia dominated and viscous dominated bubbling regimes are simply described in terms of the local pressure gradient and the flow rate ratio, the same types of ideas can be applied in the design of bubble makers in which the pressure gradients are controlled in completely different ways.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bolaños-Jiménez, R., Sevilla, A., Martínez-Bazán, C. & Gordillo, J. M. 2008 Axisymmetric bubble collapse in a quiescent liquid pool. Part II: experimental study. Phys. Fluids 20, 112104.CrossRefGoogle Scholar
Chuang, S. C. & Goldschmidt, V. W. 1970 Bubble formation due to a submerged capillary tube in quiescent and coflowing streams. Trans. ASME J. Basic Engng 92, 705711.CrossRefGoogle Scholar
Cohen, I., Li, H., Hougland, J. L., Mrksich, M. & Nagel, S. R. 2001 Using selective withdrawal to coat microparticles. Science 292, 265267.CrossRefGoogle ScholarPubMed
Ferrara, K., Pollard, R. & Borden, M. 2007 Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Engng 9, 415447.CrossRefGoogle ScholarPubMed
Gañán-Calvo, A. M. 2004 Perfectly monodisperse microbubbling by capillary flow focusing: an alternate physical description and universal scaling. Phys. Rev. E 69, 027301.CrossRefGoogle ScholarPubMed
Gañán-Calvo, A. M. & Gordillo, J. M. 2001 Perfectly monodisperse microbubbling by capillary flow focusing. Phys. Rev. Lett. 87, 274501.CrossRefGoogle ScholarPubMed
Garstecki, P., Fuerstman, M. J., Stone, H. A. & Whitesides, G. M. 2006 Formation of droplets in a microfluidic T-junction – scaling and mechanism of break-up. Lab on a Chip 6, 437446.CrossRefGoogle Scholar
Garstecki, P., Gitlin, I., DiLuzio, W., Whitesides, G. M., Kumacheva, E. & Stone, H. A. 2004 Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl. Phys. Lett. 85, 26492651.CrossRefGoogle Scholar
Gordillo, J. M. 2008 Axisymmetric bubble collapse in a quiescent liquid pool. Part I: theory and numerical simulations. Phys. Fluids 20, 112103.CrossRefGoogle Scholar
Gordillo, J. M., Sevilla, A. & Campo-Cortés, F. 2014 Global stability of stretched jets: conditions for the generation of monodisperse micro-emulsions using coflows. J. Fluid Mech. 738, 335357.CrossRefGoogle Scholar
Keim, N. C., Moller, P., Zhang, W. W. & Nagel, S. R. 2006 Breakup of air bubbles in water: memory and breakdown of cylindrical symmetry. Phys. Rev. Lett. 97, 144503.CrossRefGoogle ScholarPubMed
Og̃uz, H. N. & Prosperetti, A. 1993 Dynamics of bubble growth and detachment from a needle. J. Fluid Mech. 257, 111145.CrossRefGoogle Scholar
Rayleigh, W. S. 1878 On the instability of jets. Proc. Lond. Math. Soc. 10, 413.CrossRefGoogle Scholar
Rodríguez-Rodríguez, J., Sevilla, A., Martínez-Bazán, C. & Gordillo, J. M. 2015 Generation of microbubbles with applications to industry and medicine. Annu. Rev. Fluid Mech. 47, 405429.CrossRefGoogle Scholar
Smith, C. S. 1949 On blowing bubbles for Bragg’s dynamic crystal model. J. Appl. Phys. 20, 631.CrossRefGoogle Scholar