Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T03:50:12.417Z Has data issue: false hasContentIssue false

The prediction of turbulent boundary layer development in compressible flow

Published online by Cambridge University Press:  28 March 2006

J. E. Green
Affiliation:
Cambridge University Engineering Laboratory
Present address: Royal Aircraft Establishment, Bedford.

Abstract

Starting from Head's semi-empirical method for incompressible flow, two approaches to the prediction of turbulent boundary-layer development in compressible flow are explored. The first uses Head's incompressible method in conjunction with a compressibility transformation similar to Stewartson's transformation for laminar flow; the second carries over Head's physical arguments to treat the compressible flow directly. Measurements in supersonic flow, both on flat plates and downstream of an abrupt pressure rise, show broad agreement with the predictions of the second method but do not support the compressibility transformation. In particular, measurements on flat plates reveal that as Mach number increases the entrainment rate decreases to a lesser extent than the skin-friction coefficient. Whilst this result is consistent with the second treatment in this paper, it is difficult to reconcile with any of the compressibility transformations discussed, and the validity of these transformations in turbulent flow is therefore questioned.

Type
Research Article
Copyright
© 1968 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adcock, J. B., Peterson, J. B. & Mcree, D. I. 1965 NASA TN D-2907.
Baronti, P. O. & Libby, P. A. 1966 AIAA J. 4, 193.
Bradshaw, P. & Ferriss, D. H. 1965 ARC 26,758.
Bradshaw, P. & Ferriss, D. H. 1966 ARC 28541.
Bradshaw, P. & Galea, P. V. 1967 J. Fluid Mech. 27, 111.
Coles, D. E. 1956 J. Fluid Mech. 1, 191.
Coles, D. E. 1962 USAF Project Rand Rept. R-403-PR (also Physics of Fluids, 7, 1403).
Crocco, L. 1963 AIAA J. 1, 2723.
Culick, F. E. C. & Hill, J. A. F. 1958 J. Aero. Sci. 25, 259.
Eckert, E. R. G. 1955 J. Aero. Sci. 22, 585.
Escudier, M. P. & Nicoll, W. B. 1966 J. Fluid Mech. 25, 337.
Green, J. E. 1966 Ph.D. Thesis, Cambridge University.
Hammitt, A. G. 1958 J. Aero. Sci. 25, 345.
Hastings, R. C. 1964 R.A.E. (unpublished).
Head, M. R. 1960 ARC R & M 3152.
Lobb, R. K., Winkler, E. M. & Persh, J. 1955 J. Aero. Sci. 22, 1.
Ludwieg, H. & Tillmann, W. 1949 Ing. Archiv. 17, 288 (also NACA TM 1285 (1950)).
Mager, A. 1958 J. Aero. Sci. 25, 305.
Mager, A. 1962 J. Aerospace Sci. 29, 752.
Maise, G. & Mcdonald, H. 1967 AIAA Paper 67–199.
Morkovin, M. V. 1962 Mecanique de la Turbulence, Colloques Intern. du C.N.R.S. no. 108, 367. (Also available as The Mechanics of Turbulence. New York: Gordon and Breach.)
Patel, V. C. 1965 Ph.D. Thesis, Cambridge University.
Smith, D. W. & Walker, J. H. 1958 NACA TN 4231.
So, R. M. C. 1965 McGill Univ. Tech Note 65-6.
Spalding, D. B. & Chi, S. W. 1964 J. Fluid Mech. 18, 117.
Spence, D. A. 1961 ARC R & M 3191.
Squire, W. 1962 J. Aerospace Sci. 29, 237.
Standen, N. M. 1964 AIAA Paper no. 64–584.
Stewartson, K. 1949 Proc. Roy. Soc. A, 200, 84.
Thompson, B. G. J. 1964 ARC R & M 3447.
Thompson, B. G. J. 1965 ARC R & M 3463.