Hostname: page-component-669899f699-tzmfd Total loading time: 0 Render date: 2025-04-28T12:25:54.776Z Has data issue: false hasContentIssue false

A pore-scale resolved direct numerical simulation study for scaling analysis of the solutal convection in porous media

Published online by Cambridge University Press:  25 November 2024

Yan Jin*
Affiliation:
Institute of Multiphase Flows, Hamburg University of Technology, 21073 Hamburg, Germany
*
Email address for correspondence: [email protected]

Abstract

Understanding the solutal convection is a crucial step towards accurate prediction of CO$_2$ sequestration in deep saline aquifers. In this study, pore-scale resolved direct numerical simulations (DNS) are performed to analyse the scaling laws of the solutal convection in porous media. The porous media studied are composed of uniformly distributed square or circular elements. The Rayleigh numbers in the range $426 \le Ra \le 80\,000$, the Darcy numbers in the range $1.7\times 10^{-8} \le Da \le 8.8\times 10^{-6}$ and the Schmidt numbers in the range $250 \le Sc \le 10^4$ are considered in the DNS. The main time, length and velocity scales affecting the solutal convection are classified as the diffusive scales ($t_I$, $l_I$ and $u_I$), the convective scales ($t_{II}$, $l_{II}$ and $u_{II}$) and the shut-down scales ($t_{III}$, $l_{III}$ and $u_{III}$). These scales determine the pore-scale Rayleigh number $Ra_K$ and the Rayleigh number $Ra$. Based on the DNS results, the scaling laws for the transient dissolution flux are proposed in the different regimes of convection. It is found that the onset time of convection ($t_{oc}$) and the period of the flux-growth regime ($\Delta t_{fg}$) vary linearly with the convective time scale $t_{II}$. The merging of the original plumes and the re-initiation of the new plumes start in the same period, resulting in the merging re-initiation regime. Horizontal dispersion plays an important role in plume merging. The dissolution flux $F$ and the time since the onset of convection $t^{\ast }$ have an $F / u_{II} \sim (t^{\ast }/ t_{II})^{-0.2}$ scaling in the later stage of the merging re-initiation regime. This scaling is caused by the merging of the low-wavenumber plumes. It becomes more pronounced with decreasing porosity and leads to the nonlinear relationship between the Sherwood number $Sh$ and $Ra$ when the domain is not high enough for the plumes to fully develop. According to the DNS results, a regime is expected that is independent of both $Ra$ and $Ra_K$, while the dimensionless constant flux $F_{cf}/u_{II}$ in this regime decreases with decreasing porosity. When the mean solute concentration reaches approximately 30 %, convection enters the shut-down regime. For large $Ra$, the dimensionless flux in the shut-down regime follows the scaling law $F/u_{III}\sim (t/t_{III})^{-1.2}$ at large porosity ($\phi =0.56$) and $F/u_{III}\sim (t/t_{III})^{-1.5}$ at small porosity ($\phi =0.36$ or $0.32$). The study shows the significant pore-scale effect on the convection. The DNS cases in this study are mainly for simplified geometries and large $Ra_K$. This can lead to uncertainties of the obtained scaling coefficients. It is important to determine the scaling coefficients for real geological formations to predict a real CO$_2$ sequestration process.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alipour, M., de Paoli, M. & Soldati, A. 2020 Concentration-based velocity reconstruction in convective Hele-Shaw flows. Exp. Fluids 61 (9), 195.CrossRefGoogle Scholar
Amooie, M.A., Soltanian, M.R. & Moortgat, J. 2018 Solutal convection in porous media: comparison between boundary conditions of constant concentration and constant flux. Phys. Rev. E 98 (3), 033118.CrossRefGoogle Scholar
Backhaus, S., Turitsyn, K. & Ecke, R.E. 2011 Convective instability and mass transport of diffusion layers in a Hele-Shaw geometry. Phys. Rev. Lett. 106 (10), 104501.CrossRefGoogle Scholar
Böttcher, N., Watanabe, N., Görke, U.-J. & Kolditz, O. 2016 Geoenergy Modeling I. Springer.CrossRefGoogle Scholar
Carman, P.C. 1956 Flow of Gases Through Porous Media. Butterworths.Google Scholar
Chen, C. & Zhang, D. 2010 Pore-scale simulation of density-driven convection in fractured porous media during geological CO$_2$ sequestration. Water Res. Res. 46 (11), W11527.CrossRefGoogle Scholar
Elder, J.W. 1968 The unstable thermal interface. J. Fluid Mech. 32, 6996.CrossRefGoogle Scholar
Elenius, M.T. & Johannsen, K. 2012 On the time scales of nonlinear instability in miscible displacement porous media flow. Comput. Geosci. 16 (4), 901911.CrossRefGoogle Scholar
Ennis-King, J., Preston, I. & Paterson, L. 2005 Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Phys. Fluids 17, 084107.CrossRefGoogle Scholar
Gasow, S., Kuznetsov, A.V., Avila, M. & Jin, Y. 2021 A macroscopic two-length-scale model for natural convection in porous media driven by a species-concentration gradient. J. Fluid Mech. 926, A8.CrossRefGoogle Scholar
Gasow, S., Kuznetsov, A.V. & Jin, Y. 2022 Prediction of pore-scale-property dependent natural convection in porous media at high Rayleigh numbers. Intl J. Therm. Sci. 179, 107635.CrossRefGoogle Scholar
Gasow, S., Lin, Z., Zhang, H.C., Kuznetsov, A.V., Avila, M. & Jin, Y. 2020 Effects of pore scale on the macroscopic properties of natural convection in porous media. J. Fluid Mech. 891, A25.CrossRefGoogle Scholar
Gbadamosi, A.O., Junin, R., Manan, M.A., Agi, A. & Yusuff, A.S. 2019 An overview of chemical enhanced oil recovery: recent advances and prospects. Intl Nano Lett. 9 (3), 171202.CrossRefGoogle Scholar
Ghanbarian, B., Hunt, A., Ewing, R.P. & Sahimi, M. 2013 Tortuosity in porous media: a critical review. Soil Sci. Soc. Am. J. 77, 14611477.CrossRefGoogle Scholar
Ghoreishi-Madiseh, S.A., Hassani, F.P., Mohammadian, A. & Radziszewski, P.H. 2013 A transient natural convection heat transfer model for geothermal borehole heat exchangers. J. Renew. Sustain. Energy 5 (4), 043104.CrossRefGoogle Scholar
Guo, R., Sun, H., Zhao, Q., Li, Z., Liu, Y. & Chen, C. 2021 A novel experimental study on density-driven instability and convective dissolution in porous media. Geophys. Res. Lett. 48 (23), e2021GL095619.CrossRefGoogle Scholar
Hassanzadeh, H., Pooladi-Darvish, M. & Keith, D.W. 2007 Scaling behaviour of convective mixing, with application to geological storage of CO$_2$. AIChE J. 53 (5), 11211131.CrossRefGoogle Scholar
Hewitt, D.R., Neufeld, J.A. & Lister, J.R. 2012 Ultimate regime of high Rayleigh number convection in a porous medium. Phys. Rev. Lett. 108 (22), 224503.CrossRefGoogle Scholar
Hewitt, D.R., Neufeld, J.A. & Lister, J.R. 2013 Convective shutdown in a porous medium at high Rayleigh number. J. Fluid Mech. 719, 551586.CrossRefGoogle Scholar
Hewitt, D.R., Neufeld, J.A. & Lister, J.R. 2014 High Rayleigh number convection in a three-dimensional porous medium. J. Fluid Mech. 748, 879895.CrossRefGoogle Scholar
Hidalgo, J.J., Fe, J., Cueto-Felgueroso, L. & Juanes, R. 2012 Scaling of convective mixing in porous media. Phys. Rev. Lett. 109 (26), 264503.CrossRefGoogle ScholarPubMed
Kozeny, J. 1927 Ueber kapillare leitung des wassers im boden. Sitzb. Akad. Wiss. Wien. Math. naturw. Klasse. 136 (2a), 271306.Google Scholar
Letelier, J.A., Herrera, P., Mujica, N. & Ortega, J.H. 2016 Enhancement of synthetic schlieren image resolution using total variation optical flow: application to thermal experiments in a Hele-Shaw cell. Exp. Fluids 57 (2), 18.CrossRefGoogle Scholar
Letelier, J.A., Mujica, N. & Oortega, J.H. 2019 Perturbative corrections for the scaling of heat transport in a Hele-Shaw geometry and its application to geological vertical fractures. J. Fluid Mech. 864, 746767.CrossRefGoogle Scholar
Letelier, J.A., Ulloa, H.N., Leyrer, J. & Ortega, J.H. 2023 Scaling CO$_2$–brine mixing in permeable media via analogue models. J. Fluid Mech. 962, A8.CrossRefGoogle Scholar
Liang, Y., Wen, B., Hesse, M.A. & DiCarlo, D. 2018 Effect of dispersion on solutal convection in porous media. Geophys. Res. Lett. 45, 96909698.CrossRefGoogle Scholar
MacMinn, C.W. & Juanes, R. 2013 Buoyant currents arrested by convective dissolution. Geophys. Res. Lett. 40 (10), 20172022.CrossRefGoogle Scholar
Moukalled, F., Mangani, L. & Darwish, M. 2016 The Finite Volume Method in Computational Fluid Dynamics. Springer.CrossRefGoogle Scholar
Neufeld, J.A., Hesse, M.A., Riay, A., Hallworth, M.A., Tchelepi, H.A. & Huppert, H.E. 2010 Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37 (22), L22404.CrossRefGoogle Scholar
Otero, J., Dontcheva, L.A., Johnston, H., Worthing, R.A., Kurganov, A., Petrova, G. & Doering, C.R. 2004 High-Rayleigh-number convection in a fluid-saturated porous layer. J. Fluid Mech. 500, 263281.CrossRefGoogle Scholar
de Paoli, M. 2021 Influence of reservoir properties on the dynamics of a migrating current of carbon dioxide. Phys. Fluids 33 (1), 016602.CrossRefGoogle Scholar
de Paoli, M. 2023 Convective mixing in porous media: a review of Darcy, pore-scale and Hele-Shaw studies. Eur. Phys. J. E 46, 129.CrossRefGoogle ScholarPubMed
de Paoli, M., Alipour, M. & Soldati, A. 2020 How non-Darcy effects influence scaling laws in Hele-Shaw convection experiments. J. Fluid Mech. 892, A41.CrossRefGoogle Scholar
de Paoli, M., Howland, C.J., Verzicco, R. & Lohse, L. 2023 Convective dissolution in confined porous media. J. Fluid Mech. (submitted). arXiv:2310.04068v1.Google Scholar
de Paoli, M., Perissutti, D., Marchioli, C. & Soldati, A. 2022 Experimental assessment of mixing layer scaling laws in Rayleigh–Taylor instability. Phys. Rev. Fluids 7 (9), 093503.CrossRefGoogle Scholar
de Paoli, M., Zonta, F. & Soldati, A. 2016 Influence of anisotropic permeability on convection in porous media: implications for geological CO$_2$ sequestration. Phys. Fluids 28, 056601.CrossRefGoogle Scholar
Patil, S.B. & Chore, H.S. 2014 Contaminant transport through porous media: an overview of experimental and numerical studies. Adv. Environ. Res. 3 (1), 4569.CrossRefGoogle Scholar
Pau, G.S.H., Bell, J.B., Pruess, K., Almgren, A.S., Lijewski, M.J. & Zhang, K. 2010 High-resolution simulation and characterization of density-driven flow in CO$_2$ storage in saline aquifers. Adv. Water Resour. 33 (4), 443455.CrossRefGoogle Scholar
Pirozzoli, S., de Paoli, M., Zonta, F. & Soldati, A. 2021 Towards the ultimate regime in Rayleigh–Darcy convection. J. Fluid Mech. 911, R4.CrossRefGoogle Scholar
Rapaka, S., Chen, S., Pawar, R.J., Stauffer, P.H. & Zhang, D. 2008 Non-modal growth of perturbations in density-driven convection in porous media. J. Fluid Mech. 609, 285–30.CrossRefGoogle Scholar
Riaz, A., Hesse, M., Tchelepi, H.A. & Orr, F.M. 2006 Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87111.CrossRefGoogle Scholar
Slim, A.C. 2014 Solutal-convection regimes in a two-dimensional porous medium. J. Fluid Mech. 741, 461491.CrossRefGoogle Scholar
Slim, A.C., Bandi, M.M., Miller, J.C. & Mahadevan, L. 2013 Dissolution-driven convection in a Hele-Shaw cell. Phys. Fluids 25, 024101.CrossRefGoogle Scholar
Slim, A.C. & Ramakrishnan, T.S. 2010 Onset and cessation of time-dependent, dissolution-driven convection in porous media. Phys. Fluids 22, 124103.CrossRefGoogle Scholar
Wang, L., Nakanishi, Y., Hyodo, A. & Suekane, T. 2016 Three-dimensional structure of natural convection in a porous medium: effect of dispersion on finger structure. Intl J. Greenh. Gas Control 53, 274283.CrossRefGoogle Scholar
Wen, B., Chang, K.W. & Hesse, M.A. 2018 Convection in porous media with dispersion. Phys. Rev. Fluids 3, 123801.CrossRefGoogle Scholar
Wen, B., Corson, L.T. & Chini, G.P. 2015 Structure and stability of steady porous medium convection at large Rayleigh number. J. Fluid Mech. 772, 197224.CrossRefGoogle Scholar
Xie, Y., Simmons, C.T. & Werner, A.D. 2011 Speed of free convective fingering in porous media. Water Resour. Res. 47 (11), W11501.CrossRefGoogle Scholar
Zech, A., Attinger, S., Bellin, A., Cvetkovic, V., Dietrich, P., Fiori, A., Teutsch, G. & Dagan, G. 2019 A critical analysis of transverse dispersivity field data. Groundwater 57 (4), 632639.CrossRefGoogle ScholarPubMed