Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T17:53:01.742Z Has data issue: false hasContentIssue false

Pore-scale mass and reactant transport in multiphase porous media flows

Published online by Cambridge University Press:  30 September 2011

A. Parmigiani*
Affiliation:
Computer Science Department, University of Geneva, CH-1227 Carouge, Switzerland
C. Huber
Affiliation:
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, GA 30332, USA
O. Bachmann
Affiliation:
Department of Earth and Space Sciences, University of Washington, WA 98195, USA
B. Chopard
Affiliation:
Computer Science Department, University of Geneva, CH-1227 Carouge, Switzerland
*
Email address for correspondence: [email protected]

Abstract

Reactive processes associated with multiphase flows play a significant role in mass transport in unsaturated porous media. For example, the effect of reactions on the solid matrix can affect the formation and stability of fingering instabilities associated with the invasion of a buoyant non-wetting fluid. In this study, we focus on the formation and stability of capillary channels of a buoyant non-wetting fluid (developed because of capillary instabilities) and their impact on the transport and distribution of a reactant in the porous medium. We use a combination of pore-scale numerical calculations based on a multiphase reactive lattice Boltzmann model (LBM) and scaling laws to quantify (i) the effect of dissolution on the preservation of capillary instabilities, (ii) the penetration depth of reaction beyond the dissolution/melting front, and (iii) the temporal and spatial distribution of dissolution/melting under different conditions (concentration of reactant in the non-wetting fluid, injection rate). Our results show that, even for tortuous non-wetting fluid channels, simple scaling laws assuming an axisymmetrical annular flow can explain (i) the exponential decay of reactant along capillary channels, (ii) the dependence of the penetration depth of reactant on a local Péclet number (using the non-wetting fluid velocity in the channel) and more qualitatively (iii) the importance of the melting/reaction efficiency on the stability of non-wetting fluid channels. Our numerical method allows us to study the feedbacks between the immiscible multiphase fluid flow and a dynamically evolving porous matrix (dissolution or melting) which is an essential component of reactive transport in porous media.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Anderson, D. M, McFadden, G. B. & Wheeler, A. A. 1998 Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139165.CrossRefGoogle Scholar
2. Auzerais, F. M., Dunsmuir, J., Ferréol, B. B., Martys, N., Olson, J., Ramakrishnan, T. S., Rothman, D. H. & Schwartz, L. M. 1996 Transport in sandstone: a study based on three dimensional microtomography. Geophys. Res. Lett. 23 (7), 705708.CrossRefGoogle Scholar
3. Avrami, M. 1940 Kinetics of phase change. Intl J. Chem. Phys. 8, 212224.CrossRefGoogle Scholar
4. Bachmann, O. & Bergantz, G. W. 2006 Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. J. Volcanol. Geotherm. Res. 149, 85102.CrossRefGoogle Scholar
5. Bejan, A. 2004 Convection Heat Transfer. Wiley.Google Scholar
6. Bénard, C., Gobin, D. & Martinez, F. 2006 Melting in rectangular enclosures: experiments and numerical simulations. J. Heat Transfer 107, 794803.CrossRefGoogle Scholar
7. Bertrand, O., Binet, B., Combeau, H., Couturier, S., Delannoy, Y., Gobin, D., Lacroix, M., Le Quéré, P., Médale, M., Mencinger, J., Sadat, H. & Vieira, G. 1999 Melting driven by natural convection. A comparison exercise: first results. Intl J. Therm. Sci. 38, 526.CrossRefGoogle Scholar
8. Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for collision processes in gases. Part I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511525.CrossRefGoogle Scholar
9. Blunt, M. J. 2001 Flow in porous media pore network models and multiphase flow. Curr. Opin. Colloid Interface Sci. 6, 197207.CrossRefGoogle Scholar
10. Boek, E. S. & Venturoli, M. 2010 Lattice Boltzmann studies of fluid flow in porous media with realistic rock geometries. Comput. Math. Appl. 7, 23052314.CrossRefGoogle Scholar
11. Cahn, W. & Hilliard, J. E. 1958 Free energy of a nonuniform system. Part I. Interfacial energy. J. Chem. Phys. 28, 258.Google Scholar
12. Carslaw, H. S. & Jager, J. C. 1959 Conduction of Heat in Solids, 2nd edn. Oxford Science Publications.Google Scholar
13. Chapwanya, M. & Stockie, J. M. 2010 Numerical simulations of gravity-driven fingering in unsaturated porous media using a non-equilibrium model. Water Resour. 46, W09534.Google Scholar
14. Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 320364.CrossRefGoogle Scholar
15. Chen, Y. J. & Steen, P. H. 1997 Dynamics of inviscid capillary breakup: collapse and pinchoff of a film bridge. J. Fluid Mech. 341, 245267.CrossRefGoogle Scholar
16. Chin, J., Boek, E. S. & Coveney, P. V. 2002 Lattice Boltzmann simulation of the flow of binary immiscible fluids with different viscosities using the Shan–Chen microscopic interaction model. Phil. Trans. R. Soc. Lond. A 360, 547558.CrossRefGoogle ScholarPubMed
17. Chopard, B., Falcone, J. & Latt, J. 2009 The lattice Boltzmann advection–diffusion model revisited. Eur. J. Phys. 171, 245249.Google Scholar
18. Coles, M. E., Muegge, R. D., Jones, K. W., Dowd, B., Siddons, B., Peskin, P., Brookhaven, A. & Spanne, P. 1998 Developments in synchrotron X-ray microtomography with applications to flow in porous media. SPE Annual Technical Conference and Exhibition, SPE Res. Engng 1, 288296.Google Scholar
19. Cueto-Felgueroso, L. & Juanes, R. 2008 Nonlocal interface dynamics and pattern formation in gravity-driven unsaturated flow through porous media. Phys. Rev. Lett. 101, 244504.CrossRefGoogle ScholarPubMed
20. Cueto-Felgueroso, L. & Juanes, R. 2009a Stability analysis of a phase-field model of gravity-driven unsaturated flow through porous media. Phys. Rev. E 79, 036301.CrossRefGoogle ScholarPubMed
21. Cueto-Felgueroso, L. & Juanes, R. 2009b A phase-field model of unsaturated flow. Water Resour. Res. 45, W10409.CrossRefGoogle Scholar
22. Day, R. F., Hinch, E. J. & Lister, J. R. 1998 Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett. 80, 704707.CrossRefGoogle Scholar
23. van Duijn, C., Pieters, G. & Raats, P. 2004 Steady flows in unsaturated soils are stable. Transp. Porous Med. 57, 215244.CrossRefGoogle Scholar
24. Eggers, J. 1993 Universal pinching of 3D axisymmetric free surface flow. Phys. Rev. Lett. 71, 3458.CrossRefGoogle ScholarPubMed
25. Egorov, A., Nieber, R., Dautovand, J. & Sheshukov, A. 2003 Stability analysis of gravity driven infiltration flow. Water Resour. Res. 39 (9), 1266.CrossRefGoogle Scholar
26. Eliassi, M. & Glass, R. 2001 On the continuum scale modelling of gravity driven fingers in unsaturated porous media: the inadequacy of the Richards equation with standard monotonic constitutive relations and hysteretic equations of state. Water Resour. Res. 37 (8), 20192035.CrossRefGoogle Scholar
27. Ewing, R. P. & Berkowitz, B. 1998 A generalized growth model for simulating initial migration of dense non-aqueous phase liquids. Water Resour. Res. 34, 611622.CrossRefGoogle Scholar
28. Farcas, A. & Woods, A. W. 2009 The effect of drainage on the capillary retention of CO2 in a layered permeable rock. J. Fluid Mech. 618, 349359.CrossRefGoogle Scholar
29. Fürst, T., Vodák, R., Šir, M. & Bíl, M. 2009 On the incompatibility of Richards’ equation and finger-like infiltration in unsaturated homogeneous porous media. Water Resour. Res. 45, W03408.CrossRefGoogle Scholar
30. Gingold, R. A. & Monaghan, J. J. 1977 Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375389.CrossRefGoogle Scholar
31. Glass, R. J., Steenhuis, T. & Parlange, J.-Y. 1989 Wetting front instability. Part 2. Experimental determination of relationships between system parameters and two-dimensional unstable flow field behavior in initially dry porous media. Water Resour. Res. 25, 11951207.CrossRefGoogle Scholar
32. Grosfils, P., Boon, J. P., Chin, J. & Boek, E. S. 2004 Structural and dynamical characterization of Hele–Shaw viscous fingering. Phil. Trans. R. Soc. Lond. A 362, 17231734.CrossRefGoogle ScholarPubMed
33. Gunstensen, A. K., Rothman, D. H., Zaleski, S. & Zanetti, G. 1991 Lattice Boltzmann model for immiscible fluid. Phys. Rev. A 43, 4320.CrossRefGoogle Scholar
34. Guo, Z., Shi, B. & Zheng, C. 2002a A coupled lattice BGK model for the Boussinesq equations. Intl J. Numer. Meth. 39, 325342.CrossRefGoogle Scholar
35. Guo, Z., Zheng, C. & Shi, B. 2002b Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 046308.CrossRefGoogle ScholarPubMed
36. Hagedorn, J. G., Martys, N. S. & Douglas, J. F. 2004 Breakup of a fluid thread in a confined geometry: droplet-plug transition, perturbation sensitivity, and kinetic stabilization with confinement. Phys. Rev. E 69, 056312.CrossRefGoogle Scholar
37. He, X., Chen, S. & Zhang, R. 1999 A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability. J. Comput. Phys. 152, 642663.CrossRefGoogle Scholar
38. Hersum, T. G. & Marsh, B. D. I. 2006 Igneous microstructures from kinetic models of crystallization. J. Volcanol. Geotherm. Res. 154, 3447.CrossRefGoogle Scholar
39. Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201.CrossRefGoogle Scholar
40. Homsy, G. M. 1987 Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271311.CrossRefGoogle Scholar
41. Hoogerbrugge, P. J. & Koelman, J. M. V. A. 1992 Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 19, 155160.CrossRefGoogle Scholar
42. Huang, H., Meakin, P. & Liu, M. 2005 Computer simulation of two-phase immiscible fluid motion in unsaturated complex fractures using a volume of fluid method. Water Resour. Res. 41, W12413.CrossRefGoogle Scholar
43. Huang, H., Thorne, D. T., Schaap, M. G. & Sukop, M. C. 2007 Proposed approximation for contact angles in Shan-and-Chen-type multicomponent multiphase lattice Boltzmann models. Phy. Rev. E 76, 066701.CrossRefGoogle ScholarPubMed
44. Huber, C., Bachmann, O. & Manga, M. 2010 Two competing effects of volatiles on heat transfer in crystal-rich magmas: thermal insulation vs defrosting. J. Petrol. 51, 847867.CrossRefGoogle Scholar
45. Huber, C., Parmigiani, A., Chopard, B., Manga, M. & Bachmann, O. 2008 Lattice Boltzmann model for melting with natural convection. Intl J. Heat Fluid Flow 29, 14691480.CrossRefGoogle Scholar
46. Huppert, H. E. 1982 Flow and instability of a viscous current down a slope. Nature 300, 427429.CrossRefGoogle Scholar
47. Jany, P. & Bejan, A. 1988 Scaling theory of melting with natural convection in an enclosure. Intl J. Heat Mass Transfer 31, 12211235.CrossRefGoogle Scholar
48. Jiaung, W. S., Ho, J. R. & Kuo, C. P. 2001 Lattice Boltzmann method for the heat conduction problem with phase change. Numer. Heat Transfer 39, 167187.Google Scholar
49. Kang, Q., Lichtner, P. C. & Zhang, D. 2006 Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media. J. Geophys. Res. 111, B05203.CrossRefGoogle Scholar
50. Kang, Q. J., Zhang, D. X. & Chen, S. Y. 2005 Displacement of a three-dimensional immiscible droplet in a duct. J. Fluid Mech. 55, 4166.CrossRefGoogle Scholar
51. Latt, J., Courbebaisse, G., Chopard, B. & Falcone, J. L. 2004 Lattice Boltzmann modeling of injection moulding process. In Cellular Automata for Research and Industry (ed. Sloot, P. M. A., Chopard, B. & Hoekstra, A. G. ). pp. 345354. Springer.CrossRefGoogle Scholar
52. Latt, J., Malaspinas, O. & Chopard, B. 2010 External force and boundary conditions in lattice Boltzmann. Phys. Rev. E (submitted).Google Scholar
53. Lenormand, R., Touboul, E. & Zarcone, C. 1988 Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165187.CrossRefGoogle Scholar
54. Lundegard, P. D. & Andersen, G. 1996 Multiphase numerical simulation of air sparging performance. Ground Water 34, 451460.CrossRefGoogle Scholar
55. Manga, M. & Stone, H. A. 1993 Buoyancy-driven interactions between deformable drops at low Reynolds numbers. J. Fluid Mech. 256, 647683.CrossRefGoogle Scholar
56. Martys, N. & Chen, H. 1996 Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53, 743750.CrossRefGoogle ScholarPubMed
57. Meakin, P. & Tartakovsky, M. A. 2009 Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media. Rev. Geophys. 47, RG3002.CrossRefGoogle Scholar
58. Nagatsu, Y., Kondo, Y., Kato, Y. & Tada, Y. 2009 Effects of moderate Damköhler number on miscible viscous fingering involving viscosity decrease due to a chemical reaction. J. Fluid Mech. 625, 97.CrossRefGoogle Scholar
59. Nagatsu, Y., Kondo, Y., Kato, Y. & Tada, Y. 2011 Miscible viscous fingering involving viscosity increase by chemical reaction with moderate Damköhler number. Phys. Fluids 23, 014109.CrossRefGoogle Scholar
60. Nagatsu, Y., Matsuda, K., Kato, Y. & Tada, Y. 2007 Experimental study on miscible viscous fingering involving viscosity changes induced by variations in chemical species concentrations due to chemical reactions. J. Fluid Mech. 571, 475.CrossRefGoogle Scholar
61. Newhouse, L. A. & Pozrikidis, C. 1992 The capillary instability of annular layers and liquid threads. J. Fluid Mech. 242, 193209.CrossRefGoogle Scholar
62. Nieber, J., Dautov, R., Egorov, A. & Sheshukov, A. 2005 Dynamic capillary pressure mechanism for instability in gravity-driven flow: review and extension to very dry conditions. Transp. Porous Med. 58, 147172.CrossRefGoogle Scholar
63. Nieber, J., Sheshukov, A., Egorov, A. & Dautov, R. 2003 Non-equilibrium model for gravity-driven fingering in water repellent soils: formulation and 2-D simulations. In Soil Water Repellency: Occurrence, Consequences and Amelioration, pp. 245258. Elsevier.Google Scholar
64. Olson, J. F. & Rothman, D. H. 1997 Two-fluid flow in sedimentary rock: simulation, transport and complexity. J. Fluid Mech. 17, 181196.Google Scholar
65. Osher, S. & Sethian, J. A. 1988 Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 1249.CrossRefGoogle Scholar
66. Palabos, 2010 The Palabos software project http://www.palabos.org.Google Scholar
67. Pan, C., Hilpert, M. & Miller, C. T. 2007 Lattice-Boltzmann simulation of two-phase flow in porous media. Water Resour. Res. 40, W01501.Google Scholar
68. Papageorgiou, D. T. 1995 On the breakup of viscous liquid threads. Phys. Fluids 7, 15291544.CrossRefGoogle Scholar
69. Parmigiani, A., Huber, C., Chopard, B., Latt, J. & Bachmann, O. 2009 Application of the multi distribution function lattice Boltzmann approach to thermal flows. Eur. J. Phys. 171, 3743.Google Scholar
70. Patankar, S. V. 1980 Numerical Heat Transfer and Fluid Flow.Google Scholar
71. Pozrikidis, C. Cambridge University Press 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow, 2nd edn.CrossRefGoogle Scholar
72. Quan, S. & Hua, J. 2008 Numerical studies of bubble necking in viscous liquids. Phys. Rev. E 77, 11.CrossRefGoogle ScholarPubMed
73. Saffman, P. G. & Taylor, G. I. 1958 The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous fluid. Annu. Rev. Fluid Mech. 19, 271314.Google Scholar
74. Schaap, M. G., Porter, M. L., Christensen, B. S. & Wildenschild, D. 2007 Comparison of pressure-saturation characteristics derived from computed tomography and lattice Boltzmann simulations. Water Resour. Res. 43, W12S06.CrossRefGoogle Scholar
75. Shan, X. 1997 Simulation of Rayleigh–Bénard convection using a lattice Boltzmann method. Phys. Rev. E 55, 27802788.CrossRefGoogle Scholar
76. Shan, X. & Chen, H. 1993 Lattice Boltzmann model for simulation flows with multiple phases and components. Phys. Rev. E 47, 1815.CrossRefGoogle ScholarPubMed
77. Shan, X. & Doolen, G. D. 1995 Multicomponent lattice Boltzmann model with interparticle interaction. J. Stat. Phys. 81, 379.CrossRefGoogle Scholar
78. Sierou, A. & Lister, J. R. 2003 Self-similar solutions for viscous capillary pinch-off. J. Fluid Mech. 497, 381403.CrossRefGoogle Scholar
79. Stone, H. A. & Leal, L. G. 1990 The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220, 161186.CrossRefGoogle Scholar
80. Sukop, M. C., Huang, H., Lin, C. L., Deo, M. D., Kyeongseok, O. H. & Miller, J. D. 2008 Distribution of multiphase fluids in porous media: comparison between lattice Boltzmann modeling and micro-X-ray tomography. Phy. Rev. E 77, 026710.CrossRefGoogle ScholarPubMed
81. Sukop, M. C. & Or, D. 2003 Invasion percolation of single component, multiphase fluids with lattice Boltzmann models. Physica B 338, 298303.CrossRefGoogle Scholar
82. Swift, M., Orlandini, S., Osborn, W. & Yeomans, J. 1996 Lattice Boltzmann simulation of liquid–gas and binary-fluid system. Phys. Rev. E 54, 5041.CrossRefGoogle Scholar
83. Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid. Proc R. Soc. Lond. Ser. A 150 (870), 322337.Google Scholar
84. Woods, A. W. & Farcas, A. 2009 Capillary entry pressure and the leakage of gravity currents through a sloping layered permeable rock. J. Fluid Mech. 618, 361379.CrossRefGoogle Scholar
85. Woods, A. W. & Norris, S. 2010 On the role of caprock and fracture zones in dispersing gas plumes in the subsurface. Water Resour. Res. 46, W08522.CrossRefGoogle Scholar
86. Zhang, W. W. & Lister, J. R. 1999 Similarity solutions for capillary pinch-off in fluids of different viscosity. Phys. Rev. Lett. 83, 11511154.CrossRefGoogle Scholar
87. Zou, Q. & He, X. 1997 On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9 (6), 15911598.CrossRefGoogle Scholar