Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-26T06:39:27.120Z Has data issue: false hasContentIssue false

Polar confinement of the Sun's interior magnetic field by laminar magnetostrophic flow

Published online by Cambridge University Press:  19 April 2011

TOBY S. WOOD*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
MICHAEL E. McINTYRE
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK
*
Present address: Department of Applied Mathematics and Statistics, University of California at Santa Cruz, CA 96064, USA. Email address for correspondence: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The global-scale interior magnetic field Bi needed to account for the Sun's observed differential rotation can be effective only if confined below the convection zone in all latitudes including, most critically, the polar caps. Axisymmetric solutions are obtained to the nonlinear magnetohydrodynamic equations showing that such polar confinement can be brought about by a very weak downwelling flow U ~ 10−5cms−1 over each pole. Such downwelling is consistent with the helioseismic evidence. All three components of the magnetic field B decay exponentially with altitude across a thin, laminar ‘magnetic confinement layer’ located at the bottom of the tachocline and permeated by spiralling field lines. With realistic parameter values, the thickness of the confinement layer ~10−3 of the Sun's radius, the thickness scale being the magnetic advection–diffusion scale δ = η/U where the magnetic (ohmic) diffusivity η ≈ 4.1 × 102cm2s−1. Alongside baroclinic effects and stable thermal stratification, the solutions take into account the stable compositional stratification of the helium settling layer, if present as in today's Sun, and the small diffusivity of helium through hydrogen, χ ≈ 0.9 × 101cm2s−1. The small value of χ relative to η produces a double boundary-layer structure in which a ‘helium sublayer‘ of smaller vertical scale (χ/η)1/2δ is sandwiched between the top of the helium settling layer and the rest of the confinement layer. Solutions are obtained using both semi-analytical and purely numerical, finite-difference techniques. The confinement-layer flows are magnetostrophic to excellent approximation. More precisely, the principal force balances are between Lorentz, Coriolis, pressure-gradient and buoyancy forces, with relative accelerations negligible to excellent approximation. Viscous forces are also negligible, even in the helium sublayer where shears are greatest. This is despite the kinematic viscosity being somewhat greater than χ. We discuss how the confinement layers s at each pole might fit into a global dynamical picture of the solar tachocline. That picture, in turn, suggests a new insight into the early Sun and into the longstanding enigma of solar lithium depletion.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence <http://creativecommons.org/licenses/by-nc-sa/2.5/>. The written permission of Cambridge University Press must be obtained for commercial re-use.

References

REFERENCES

Braithwaite, J. & Spruit, H. C. 2004 A fossil origin for the magnetic field in A stars and white dwarfs. Nature 431, 819821.CrossRefGoogle Scholar
Brun, A. S. & Zahn, J.-P. 2006 Magnetic confinement of the solar tachocline. Astron. Astrophys. 457, 665674.Google Scholar
Charbonneau, P. & MacGregor, K. B. 1993 Angular Momentum Transport in Magnetized Stellar Radiative Zones. II. The Solar Spin-down. Astrophys. J. 417, 762780.CrossRefGoogle Scholar
Charbonnel, C. & Talon, S. 2007 On Internal Gravity Waves in Low-mass Stars. In Unsolved Problems in Stellar Physics: A Conference in Honor of Douglas Gough (ed. Stancliffe, R. J., Dewi, J., Houdek, G., Martin, R. G. & Tout, C. A.), American Institute of Physics Conference Series, vol. 948, pp. 1526. American Institute of Physics.Google Scholar
Christensen-Dalsgaard, J., Gough, D. O. & Thompson, M. J. 1992 On the rate of destruction of lithium in late-type main-sequence stars. Astron. Astrophys. 264, 518528.Google Scholar
Christensen-Dalsgaard, J., Proffitt, C. R. & Thompson, M. J. 1993 Effects of diffusion on solar models and their oscillation frequencies. Astrophys. J. 403, L75L78.Google Scholar
Christensen-Dalsgaard, J. & Thompson, M. J. 2007 Observational results and issues concerning the tachocline. In The Solar Tachocline (ed. Hughes, D. W., Rosner, R. & Weiss, N. O.), p. 53. Cambridge University Press.Google Scholar
Ciacio, F., degl'Innocenti, S. & Ricci, B. 1997 Updating standard solar models. Astron. Astrophys. Suppl. 123, 449454.Google Scholar
Debnath, L. 1973 On Ekman and Hartmann boundary layers in a rotating fluid. Acta Mechanica 18, 333341.Google Scholar
Elliott, J. R. 1997 Aspects of the solar tachocline. Astron. Astrophys. 327, 12221229.Google Scholar
Elliott, J. R. & Gough, D. O. 1999 Calibration of the thickness of the solar tachocline. Astrophys. J. 516, 475481.Google Scholar
Ferraro, V. C. A. 1937 The non-uniform rotation of the Sun and its magnetic field. Mon. Not. R. Astron. Soc. 97, 458472.CrossRefGoogle Scholar
Garaud, P. & Brummell, N. H. 2008 On the penetration of meridional circulation below the solar convection zone. Astrophys. J. 674, 498510.Google Scholar
Garaud, P. & Garaud, J.-D. 2008 Dynamics of the solar tachocline. II. The stratified case. Mon. Not. R. Astron. Soc. 391, 12391258.Google Scholar
Gilman, P. A. & Cally, P. S. 2007 Global MHD instabilities of the tachocline. In The Solar Tachocline (ed. Hughes, D. W., Rosner, R. & Weiss, N. O.), p. 243. Cambridge University Press.CrossRefGoogle Scholar
Gough, D. 2007 An introduction to the solar tachocline. In The Solar Tachocline (ed. Hughes, D. W., Rosner, R. & Weiss, N. O.), p. 3. Cambridge University Press.Google Scholar
Gough, D. O. & McIntyre, M. E. 1998 Inevitability of a magnetic field in the Sun's radiative interior. Nature 394, 755757.CrossRefGoogle Scholar
Haynes, P. H., McIntyre, M. E., Shepherd, T. G., Marks, C. J. & Shine, K. P. 1991 On the ‘downward control’ of extratropical diabatic circulations by eddy-induced mean zonal forces. J. Atmos. Sci. 48, 651680.2.0.CO;2>CrossRefGoogle Scholar
Hughes, D. W., Rosner, R. & Weiss, N. O. 2007 The Solar Tachocline. Cambridge University Press.CrossRefGoogle Scholar
Kitchatinov, L. L. & Rüdiger, G. 2006 Magnetic field confinement by meridional flow and the solar tachocline. Astron. Astrophys. 453, 329333.CrossRefGoogle Scholar
Kitchatinov, L. L. & Rüdiger, G. 2008 Diamagnetic pumping near the base of a stellar convection zone. Astron. Nachr. 329, 372375.CrossRefGoogle Scholar
Kleeorin, N., Rogachevskii, I., Ruzmaikin, A., Soward, A. M. & Starchenko, S. 1997 Axisymmetric flow between differentially rotating spheres in a dipole magnetic field. J. Fluid Mech. 344, 213244.CrossRefGoogle Scholar
MacGregor, K. B. & Charbonneau, P. 1999 Angular momentum transport in magnetized stellar radiative zones. IV. Ferraro's theorem and the solar tachocline. Astrophys. J. 519, 911917.Google Scholar
McIntyre, M. 1994 The quasi-biennial oscillation (QBO): some points about the terrestrial QBO and the possibility of related phenomena in the solar interior. In The Solar Engine and Its Influence on Terrestrial Atmosphere and Climate (ed. Nesme-Ribes, E.), p. 293. Available at: www.atm.damtp.cam.ac.uk/people/mem/tachocline.Google Scholar
McIntyre, M. E. 2003 Solar tachocline dynamics: eddy viscosity, anti-friction, or something in between? In Stellar Astrophysical Fluid Dynamics (ed. Thompson, M. J. & Christensen-Dalsgaard, J.), pp. 111130. Cambridge University Press.CrossRefGoogle Scholar
McIntyre, M. E. 2007 Magnetic confinement and the sharp tachopause. In The Solar Tachocline (ed. Hughes, D. W., Rosner, R. & Weiss, N. O.), p. 183. Cambridge University Press, corrected version available at: www.atm.damtp.cam.ac.uk/people/mem/tachocline.Google Scholar
Mestel, L. 1953 Rotation and stellar evolution. Mon. Not. R. Astron. Soc. 113, 716745.Google Scholar
Mestel, L. 2011 Stellar Magnetism, 2nd edn. Oxford University Press.Google Scholar
Mestel, L. & Moss, D. L. 1986 On mixing by the Eddington-Sweet circulation. Mon. Not. R. Astron. Soc. 221, 2551.CrossRefGoogle Scholar
Mestel, L. & Weiss, N. O. 1987 Magnetic fields and non-uniform rotation in stellar radiative zones. Mon. Not. R. Astron. Soc. 226, 123135.CrossRefGoogle Scholar
Parfrey, K. P. & Menou, K. 2007 The origin of solar activity in the tachocline. Astrophys. J. 667, L207L210.Google Scholar
Plumb, R. A. & McEwan, A. D. 1978 The instability of a forced standing wave in a viscous stratified fluid: a laboratory analogue of the quasi-biennial oscillation. J. Atmos. Sci. 35, 18271839.2.0.CO;2>CrossRefGoogle Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. 1986 Numerical Recipes: The Art of Scientific Computing. Cambridge University Press.Google Scholar
Rogers, T. M. & Glatzmaier, G. A. 2006 Angular Momentum Transport by Gravity Waves in the Solar Interior. Astrophys. J. 653, 756764.Google Scholar
Rüdiger, G. & Kitchatinov, L. L. 1997 The slender solar tachocline: a magnetic model. Astron. Nachr. 318, 273279.CrossRefGoogle Scholar
Schatzman, E. 1993 Transport of angular momentum and diffusion by the action of internal waves. Astron. Astrophys. 279, 431446.Google Scholar
Schou, J., Antia, H. M., Basu, S., Bogart, R. S., Bush, R. I., Chitre, S. M., Christensen-Dalsgaard, J., diMauro, M. P. Mauro, M. P., Dziembowski, W. A., Eff-Darwich, A., Gough, D. O., Haber, D. A., Hoeksema, J. T., Howe, R., Korzennik, S. G., Kosovichev, A. G., Larsen, R. M., Pijpers, F. P., Scherrer, P. H., Sekii, T., Tarbell, T. D., Title, A. M., Thompson, M. J. & Toomre, J. 1998 Helioseismic studies of differential rotation in the solar envelope by the Solar Oscillations Investigation using the Michelson Doppler Imager. Astrophys. J. 505, 390417.CrossRefGoogle Scholar
Spiegel, E. A. & Zahn, J.-P. 1992 The solar tachocline. Astron. Astrophys. 265, 106114.Google Scholar
Spruit, H. C. 2002 Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923932.Google Scholar
Taylor, J. B. 1963 The magneto-hydrodynamics of a rotating fluid and the earth's dynamo problem. Proc. R. Soc. Lond. A 274, 274283.Google Scholar
Tobias, S. M., Brummell, N. H., Clune, T. L. & Toomre, J. 2001 Transport and storage of magnetic field by overshooting turbulent compressible convection. Astrophys. J. 549, 11831203.CrossRefGoogle Scholar
Vauclair, S., Vauclair, G., Schatzman, E. & Michaud, G. 1978 Hydrodynamical instabilities in the envelopes of main-sequence stars – Constraints implied by the lithium, beryllium, and boron observations. Astrophys. J. 223, 567582.Google Scholar
Walker, M. R., Barenghi, C. F. & Jones, C. A. 1998 A note on dynamo action at asymptotically small Ekman number. Geophys. Astrophys. Fluid Dyn. 88, 261275.Google Scholar
Weiss, N. O., Thomas, J. H., Brummell, N. H. & Tobias, S. M. 2004 The origin of penumbral structure in sunspots: downward pumping of magnetic flux. Astrophys. J. 600, 10731090.Google Scholar
Wood, T. S. 2010 The solar tachocline: a self-consistent model of magnetic confinement. PhD thesis, University Library, Superintendent of Manuscripts, Cambridge.Google Scholar
Wood, T. S. & McIntyre, M. E. 2007 Confinement of the Sun's interior magnetic field: some exact boundary-layer solutions. In Unsolved Problems in Stellar Physics: A Conference in Honor of Douglas Gough (ed. Stancliffe, R. J., Dewi, J., Houdek, G., Martin, R. G. & Tout, C. A.), American Institute of Physics Conference Series, vol. 948, pp. 303308. Corrigendum at: www.atm.damtp.cam.ac.uk/people/mem/tachocline. American Institute of Physics.Google Scholar
Zahn, J.-P., Talon, S. & Matias, J. 1997 Angular momentum transport by internal waves in the solar interior. Astron. Astrophys. 322, 320328.Google Scholar