Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T11:11:56.380Z Has data issue: false hasContentIssue false

Planetary (Rossby) waves and inertia–gravity (Poincaré) waves in a barotropic ocean over a sphere

Published online by Cambridge University Press:  30 May 2013

Nathan Paldor*
Affiliation:
Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
Yair De-Leon
Affiliation:
Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
Ofer Shamir
Affiliation:
Fredy and Nadine Herrmann Institute of Earth Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
*
Email address for correspondence: [email protected]

Abstract

The construction of approximate Schrödinger eigenvalue equations for planetary (Rossby) waves and for inertia–gravity (Poincaré) waves on an ocean-covered rotating sphere yields highly accurate estimates of the phase speeds and meridional variation of these waves. The results are applicable to fast rotating spheres such as Earth where the speed of barotropic gravity waves is smaller than twice the tangential speed on the equator of the rotating sphere. The implication of these new results is that the phase speed of Rossby waves in a barotropic ocean that covers an Earth-like planet is independent of the speed of gravity waves for sufficiently large zonal wavenumber and (meridional) mode number. For Poincaré waves our results demonstrate that the dispersion relation is linear, (so the waves are non-dispersive and the phase speed is independent of the wavenumber), except when the zonal wavenumber and the (meridional) mode number are both near 1.

Type
Papers
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chapman, S. & Lindzen, R. S. 1970 Amospheric Tides: Thermal and Gravitational. D. Reidel.Google Scholar
Chelton, D. B. & Schlax, M. G. 1996 Global observations of oceanic Rossby waves. Science 272, 234238.Google Scholar
Cushman-Roisin, B. 1994 Introduction to Geophysical Fluid Dynamics. Prentice Hall.Google Scholar
De-Leon, Y., Erlick, C. & Paldor, N. 2010 The eigenvalue equations of equatorial waves on a sphere. Tellus 62A, 6270.Google Scholar
De-Leon, Y. & Paldor, N. 2009 Linear waves in mid-latitudes on the rotating spherical Earth. J. Phys. Oceanogr. 39 (12), 32043215.Google Scholar
De-Leon, Y. & Paldor, N. 2011 Zonally propagating wave solutions of Laplace tidal equations in a baroclinic ocean of an aqua-planet. Tellus 63A, 348353.Google Scholar
Haurwitz, B. 1940 The motion of atmospheric disturbances on the spherical Earth. J. Mar. Res. 3, 254267.Google Scholar
Hough, S. S. 1898 On the application of harmonic analysis to the dynamical theory of the tides. Part II. On the general integration of Laplace’s dynamical equations. Phil. Trans. R. Soc. Lond. A191, 139185.Google Scholar
Laplace, P. S. 1776 Recherches sur plusiers points du system du monde,  Mémoures de L’Académie Royale des Sciences de Paris (Reprinted in Euvres complètes de Laplace, Gauthier Villard, Paris, 9, 1893).Google Scholar
Longuet-Higgins, M. S. 1968 The eigenfunctions of Laplace’s tidal equations over a sphere. Phil. Trans. R. Soc. Lond. A 262, 511607.Google Scholar
Margules, M. 1893 Luftbewegungen in einer rotierenden Sphäroidschale. Sitz. Ber. Akad. Wiss. Wien IIA 102, 1156.Google Scholar
Osychny, V. & Cornillon, P. 2004 Properties of Rossby waves in the North Atlantic estimated from satellite data. J. Phys. Oceanogr. 31 (1), 6176.Google Scholar
Paldor, N., Rubin, S. & Mariano, A. J. 2007 A consistent theory for linear waves of the shallow water equations on a rotating plane in mid-latitudes. J. Phys. Oceanogr. 37 (1), 115128.Google Scholar
Paldor, N. & Sigalov, A. 2008 Trapped waves in mid-latitudes on the $\beta $ -plane. Tellus 60A, 742748.Google Scholar
Paldor, N. & Sigalov, A. 2011 An invariant theory of the linearized shallow water equations with rotation and its application to a sphere and a plane. Dyn. Atmos. Ocean 51, 2644.Google Scholar
Pedlosky, J. 1982 Geophysical Fluid Dynamics. Springer.Google Scholar
Rossby, C.-G. 1939 Relation between variation in the intensity of the zonal circulation of the atmosphere and the displacement of the semi-permanent centres of action. J. Mar. Res. 2, 3855.Google Scholar
Schiff, L. I. 1968 Quantum Mechanics. McGraw-Hill.Google Scholar
Trefethen, L. N. 2000 Spectral Methods in MATLAB. SIAM.Google Scholar
Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Zang, X. & Wunch, C. 1999 The observed dispersion relationship for North Pacific Rossby wave motions. J. Phys. Oceanogr. 29 (9), 21832190.Google Scholar