Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T16:41:43.012Z Has data issue: false hasContentIssue false

Phase diagram for preferential flow in dual permeable media

Published online by Cambridge University Press:  08 September 2022

Fanli Liu
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
Moran Wang*
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
*
Email address for correspondence: [email protected]

Abstract

We study the preference of two-phase displacements systematically by theoretical derivations and numerical simulations via a non-uniform pore doublet model. All the most important impact factors, including viscosity ratio, capillary number, wetting conditions and boundary conditions, have been considered, and finally a complete phase diagram for preferential flow has been obtained. The simple treatment for the dual-permeability media has been validated, and further, with a few necessary corrections the phase diagram is applicable for disordered permeable media in general. These results help us to understand the occurrence and manipulation of preferential flow in heterogeneous permeable media.

Type
JFM Papers
Copyright
© Tsinghua University, 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aker, E., Måløy, K.J. & Hansen, A. 2000 Viscous stabilization of 2D drainage displacements with trapping. Phys. Rev. Lett. 84 (20), 4589.CrossRefGoogle ScholarPubMed
Al-Housseiny, T.T., Hernandez, J. & Stone, H.A. 2014 Preferential flow penetration in a network of identical channels. Phys. Fluids 26 (4), 042110.CrossRefGoogle Scholar
Babchin, A., Brailovsky, I., Gordon, P. & Sivashinsky, G. 2008 Fingering instability in immiscible displacement. Phys. Rev. E 77 (2), 026301.CrossRefGoogle ScholarPubMed
Bahadori, A. 2018 Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs. Gulf Professional.Google Scholar
Chatzis, I. & Dullien, F.A.L. 1983 Dynamic immiscible displacement mechanisms in pore doublets: theory versus experiment. J. Colloid Interface Sci. 91 (1), 199222.CrossRefGoogle Scholar
Chen, G. & Neuman, S.P 1996 Wetting front instability in randomly stratified soils. Phys. Fluids 8 (2), 353369.CrossRefGoogle Scholar
Cieplak, M. & Robbins, M.O. 1988 Dynamical transition in quasistatic fluid invasion in porous media. Phys. Rev. Lett. 60 (20), 2042.CrossRefGoogle ScholarPubMed
Cottin, C., Bodiguel, H. & Colin, A. 2010 Drainage in two-dimensional porous media: from capillary fingering to viscous flow. Phys. Rev. E 82 (4), 046315.CrossRefGoogle ScholarPubMed
Ferer, M., Ji, C., Bromhal, G.S., Cook, J., Ahmadi, G. & Smith, D.H. 2004 Crossover from capillary fingering to viscous fingering for immiscible unstable flow: experiment and modeling. Phys. Rev. E 70 (1), 016303.CrossRefGoogle ScholarPubMed
Good, S.P., Noone, D. & Bowen, G. 2015 Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349 (6244), 175177.CrossRefGoogle ScholarPubMed
Gu, Q., Liu, H. & Wu, L. 2021 Preferential imbibition in a dual-permeability pore network. J. Fluid Mech. 915, A138.CrossRefGoogle Scholar
Guo, H., Song, K. & Hilfer, R. 2020 A critical review of capillary number and its application in enhanced oil recovery. In SPE Improved Oil Recovery Conference. OnePetro.CrossRefGoogle Scholar
Hewitt, D.R., Neufeld, J.A. & Lister, J.R. 2014 High Rayleigh number convection in a porous medium containing a thin low-permeability layer. J. Fluid Mech. 756, 844869.CrossRefGoogle Scholar
Holtzman, R. & Segre, E. 2015 Wettability stabilizes fluid invasion into porous media via nonlocal, cooperative pore filling. Phys. Rev. Lett. 115 (16), 164501.CrossRefGoogle ScholarPubMed
Huppert, H.E. & Neufeld, J.A. 2014 The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46, 255272.CrossRefGoogle Scholar
Jensen, O.E. & Chernyavsky, I.L. 2019 Blood flow and transport in the human placenta. Annu. Rev. Fluid Mech. 51, 2547.CrossRefGoogle Scholar
Khayamyan, S., Lundström, T.S. & Gustavsson, L.H. 2014 Experimental investigation of transitional flow in porous media with usage of a pore doublet model. Transp. Porous Med. 101 (2), 333348.CrossRefGoogle Scholar
Lenormand, R., Touboul, E. & Zarcone, C. 1988 Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189 (1), 165187.CrossRefGoogle Scholar
Lenormand, R. & Zarcone, C. 1985 Invasion percolation in an etched network: measurement of a fractal dimension. Phys. Rev. Lett. 54 (20), 2226.CrossRefGoogle Scholar
Liu, F. & Wang, M. 2022 a Trapping patterns during capillary displacements in disordered media. J. Fluid Mech. 933, A52.CrossRefGoogle Scholar
Liu, F. & Wang, M. 2022 b Wettability effects on mobilization of ganglia during displacement. Intl J. Mech. Sci. 215, 106933.CrossRefGoogle Scholar
Måløy, K.J., Feder, J. & Jøssang, T. 1985 Viscous fingering fractals in porous media. Phys. Rev. Lett. 55 (24), 2688.CrossRefGoogle Scholar
Moore, T.F. & Slobod, R.L. 1955 Displacement of oil by water-effect of wettability, rate, and viscosity on recovery. In Fall meeting of the petroleum branch of AIME, SPE-502-G. OnePetro.CrossRefGoogle Scholar
Odier, C., Levaché, B., Santanach-Carreras, E. & Bartolo, D. 2017 Forced imbibition in porous media: a fourfold scenario. Phys. Rev. Lett. 119 (20), 208005.CrossRefGoogle ScholarPubMed
Oliveira, L.I., Demond, A.H., Abriola, L.M. & Goovaerts, P. 2006 Simulation of solute transport in a heterogeneous vadose zone describing the hydraulic properties using a multistep stochastic approach. Water Resour. Res. 42 (5), W05420.CrossRefGoogle Scholar
Payatakes, A.C. 1982 Dynamics of oil ganglia during immiscible displacement in water-wet porous media. Annu. Rev. Fluid Mech. 14 (1), 365393.CrossRefGoogle Scholar
Phillips, O.M. 2009 Geological Fluid Dynamics: Sub-surface Flow and Reactions. Cambridge University Press.CrossRefGoogle Scholar
Primkulov, B.K., Pahlavan, A.A., Fu, X., Zhao, B., MacMinn, C.W. & Juanes, R. 2021 Wettability and Lenormand's diagram. J. Fluid Mech. 923, A34.CrossRefGoogle Scholar
Sorbie, K.S., Wu, Y.Z. & McDougall, S.R. 1995 The extended Washburn equation and its application to the oil/water pore doublet problem. J. Colloid Interface Sci. 174 (2), 289301.CrossRefGoogle Scholar
Tartakovsky, A.M., Neuman, S.P. & Lenhard, R.J. 2003 Immiscible front evolution in randomly heterogeneous porous media. Phys. Fluids 15 (11), 33313341.CrossRefGoogle Scholar
Trojer, M., Szulczewski, M.L. & Juanes, R. 2015 Stabilizing fluid–fluid displacements in porous media through wettability alteration. Phys. Rev. Appl. 3 (5), 054008.CrossRefGoogle Scholar
Zhang, C., Oostrom, M., Wietsma, T.W., Grate, J.W. & Warner, M.G. 2011 Influence of viscous and capillary forces on immiscible fluid displacement: pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy Fuels 25 (8), 34933505.CrossRefGoogle Scholar
Zheng, J., Chen, Z., Xie, C., Wang, Z., Lei, Z., Ju, Y. & Wang, M. 2018 Characterization of spontaneous imbibition dynamics in irregular channels by mesoscopic modeling. Comput. Fluids 168, 2131.CrossRefGoogle Scholar