Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T22:10:13.209Z Has data issue: false hasContentIssue false

Phase and amplitude discrepancies in the surface wave due to a wedge-ended hull form

Published online by Cambridge University Press:  29 March 2006

R. G. Standing
Affiliation:
Ship Division, National Physical Laboratory

Abstract

A deep surface-piercing wedge-ended hull model was towed through still water. Measurements of the surface wave pattern confirmed earlier findings for ship models, that the measured bow-wave cusp line often lies well forward of the position predicted by thin-ship theory, and that this shift increases with bow water-line angle and with decreasing model speed. Two possible explanations are considered here in terms of changes of wave phase speed with wave convection and steepness. Calculations based on a transformation method due to Guilloton predict more realistic wave profiles than linear theory, but account for less than half the observed shift. Some tentative conclusions are drawn.

The singularity in the Green's function double integral is removed by an improved method, which simplifies the numerical integration. The new integrand decays within one oscillation.

Type
Research Article
Copyright
© 1974 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions. Dover.
Dagan, G. 1972 Proc. 9th ONR Symp. on Naval Hydrodyn., Paris, to appear.
Eggers, K. W. H. 1970 Stevens Inst. Tech., Davidson Lab. Rep. SIT-DL-70-1423.
Emerson, A. 1971 Trans. N.E. Coast Instn. Engrs Shipb. 87, 139.
Everest, J. T. & Hogben, N. 1970 Trans. Roy. Instn. Nav. Archit. 112, 319.
Gadd, G. E. 1969 Trans. Roy. Instn. Nav. Archit. 111, 487.
Gadd, G. E. 1970 Trans. Roy. Instn. Nav. Archit. 112, 335.
Gadd, G. E. 1971 Nat. Phys. Lab. Ship Rep. no. 156.
Gadd, G. E. 1973 Trans. Roy. Instn. Nav. Archit. to appear.
Guilloton, R. 1964 Bull. Ass. Tech. Maritime & Aeronautique, 64, 537.
Hogben, N. 1957 Trans. Roy. Instn. Nav. Archit. 99, 446.
Hogben, N. 1971 Trans. Roy. Instn. Nav. Archit. 113, 345.
Hogben, N. 1972a J. Fluid Mech. 55, 513.
Hogben, N. 1972b Trans. Roy. Instn. Nav. Archit. 114, 127.
Hovgaard, W. 1909 Trans. Roy. Instn. Nav. Archit. 51, 251.
Inui, T. 1962 Trans. Soc. Nav. Archit. Mar. Engrs, 70, 283.
Jinnaka, T. 1957 Soc. Nav. Archit. Japan, 60th Anniv. Ser. 2, 83.
Kajitani, H. 1963 Proc. Int. Seminar Theoretical Wave Resistance. Ann Arbor.
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.
Mori, K., Inui, T. & Kajttani, H. 1972 Proc. 9th onr Symp. Naval Hydrodyn., Paris, to appear.
Newman, J. N. 1971 J. Ship Res. 15, 1.
Shearer, J. R. 1951 Trans. N.E. Coast Instn. Engrs Shipb. 67, 43.
Ursell, F. 1960 J. Fluid Mech. 8, 418.
Van Dyke, M. 1964 Perturbation Methods in Fluid Mechanics. Academic.
Wigley, W. C. S. 1931 Trans. N.E. Coast Instn. Engrs Shipb. 47, 153.
Wigley, W. C. S. 1949 Bull. Ass. Tech. Maritime & Aeronautique, 48, 533.
Yeung, R. W. 1972 J. Ship Res. 16, 47.
Yim, B. 1964 Hydronautics Inc. Tech. Rep. no. 117–5.