Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T21:42:17.490Z Has data issue: false hasContentIssue false

Periodic saltation over hydrodynamically rough beds: aeolian to aquatic

Published online by Cambridge University Press:  30 November 2015

Diego Berzi*
Affiliation:
Department of Civil and Environmental Engineering, Politecnico di Milano, 20133 Milan, Italy
James T. Jenkins
Affiliation:
School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, USA
Alexandre Valance
Affiliation:
Institut de Physique de Rennes, CNRS UMR 6251, Université de Rennes I, 35042 Rennes, France
*
Email address for correspondence: [email protected]

Abstract

We determine approximate analytical solutions for average periodic trajectories of particles that are accelerated by the turbulent shearing of a fluid between collisions with a hydrodynamically rough bed. We indicate how the viscosity of the fluid may influence the collisions with the bed. The approximate solutions compare well with periodic solutions for average periodic trajectories over rigid bumpy and erodible beds that are generated numerically. The analytic solutions permit the determination of the relations between the particle flux and the strength of the shearing flow over a range of particle and fluid properties that vary between those for sand in air and sand in water.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, J. E. & Francis, J. R. D. 1977 Saltation and suspension trajectories of solid grains in a water stream. Phil. Trans. R. Soc. Lond. A 284, 225254.Google Scholar
Andreotti, B. 2004 A two-species model of aeolian sand transport. J. Fluid Mech. 510, 4770.Google Scholar
Ancey, C., Bigillon, F., Frey, P., Lanier, J. & Ducret, R. 2002 Saltating motion of a bead in a rapid water stream. Phys. Rev. E 66 (3), 036306.Google Scholar
Ancey, C., Davison, A. C., Böhm, T., Jodeau, M. & Frey, P. 2008 Entrainment and motion of coarse particles in a shallow water stream down a steep slope. J. Fluid Mech. 595, 83114.Google Scholar
Anderson, R. S. & Haff, P. K. 1988 Simulation of eolian saltation. Science 241, 820823.Google Scholar
Bagnold, R. A. 1941 The Physics of Blown Sand and Desert Dunes. Methuen.Google Scholar
Bagnold, R. A.1966 An approach to the sediment transport problem from general physics US Geological Survey Professional Paper 422-I:37.Google Scholar
Beladjine, D., Ammi, M., Oger, L. & Valance, A. 2007 Collision process between an incident bead and a three-dimensional granular packing. Phys. Rev. E 75 (6), 061305.Google Scholar
Berzi, D. 2013 Transport formula for collisional sheet flows with turbulent suspension. J. Hydraul. Engng ASCE 139 (4), 359363.Google Scholar
Berzi, D. & Fraccarollo, L. 2013 Inclined, collisional sediment transport. Phys. Fluids 25 (10), 106601.CrossRefGoogle Scholar
Burr, D. M., Bridges, N. T., Marshall, J. R., Smith, J. K., White, B. R. & Emery, J. P. 2015 Higher-than-predicted saltation threshold wind speeds on Titan. Nature 517, 6063.Google Scholar
Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory of Non-Uniform Gases. Cambridge University Press.Google Scholar
Crassous, J., Beladjine, D. & Valance, A. 2007 Impact of a projectile on a granular medium described by a collision model. Phys. Rev. Lett. 99, 248001.Google Scholar
Creyssels, M., Dupont, P., Ould El Moctar, A., Valance, A., Cantat, I., Jenkins, J. T., Pasini, J. M. & Rasmussen, K. R. 2009 Saltating particles in a turbulent boundary layer: experiment and theory. J. Fluid Mech. 625, 47.Google Scholar
Drake, T. G., Shreve, R. L., Dietrich, W. E., Whiting, P. J. & Leopold, L. B. 1988 Bedload transport of fine gravel observed by motion-picture photography. J. Fluid Mech. 192, 193217.Google Scholar
Drew, D. A. 1975 Turbulent sediment transport over a flat bottom using momentum balance. J. Appl. Mech. 42, 3844.Google Scholar
Durán, O., Claudin, P. & Andreotti, B. 2011 On aeolian transport: grain-scale interactions, dynamical mechanisms and scaling laws. Aeolian Res. 3, 243270.Google Scholar
Durán, O., Andreotti, B. & Claudin, P. 2012 Numerical simulation of turbulent sediment transport, from bed load to saltation. Phys. Fluids 24, 103306.Google Scholar
Fernandez Luque, R. & van Beek, R. 1976 Erosion and transport of bed-load sediment. J. Hydraul Res. 14 (2), 127144.Google Scholar
Foucaut, J.-M. & Stanislas, M. 1997 Experimental study of saltating particle trajectories. Exp. Fluids 22 (4), 321326.Google Scholar
Gersten, K. & Schlichting, H. 2000 Boundary-Layer Theory. Springer.Google Scholar
Greeley, R., Iversen, J., Leach, R., Marshall, J., Williams, S. & White, B. 1984 Windblown sand on Venus – preliminary results of laboratory simulations. Icarus 57, 112124.CrossRefGoogle Scholar
Ho, T. D., Dupont, P., Ould El Moctar, A. & Valance, A. 2012 Particle velocity distribution in saltation transport. Phys. Rev. E 85 (5), 052301.Google Scholar
Ho, T. D., Valance, A., Dupont, P. & Ould El Moctar, A. 2011 Scaling laws in aeolian sand transport. Phys. Rev. Lett. 106, 47.Google Scholar
Ho, T. D., Valance, A., Dupont, P. & Ould El Moctar, A. 2014 Aeolian sand transport: length and height distributions of saltation trajectories. Aeolian Res. 12, 6574.Google Scholar
Hsu, T.-J., Jenkins, J. T. & Liu, P. L.-F. 2003 On two-phase sediment transport: dilute flow. J. Geophys. Res. 108 (C3), 3057.Google Scholar
Iversen, J. D. & Greeley, R. 1987 Aeolian saltation threshold: the effect of density ratio. Sedimentology 34 (4), 699706.Google Scholar
Iversen, J. D. & Rasmussen, K. R. 1999 The effect of wind speed and bed slope on sand transport. Sedimentology 46, 723731.Google Scholar
Iversen, J. D. & White, B. R. 1982 Saltation threshold on Earth, Mars and Venus. Sedimentology 29 (1), 111119.Google Scholar
Jenkins, J. T., Cantat, I. & Valance, A. 2010 Continuum model for steady, fully developed saltation above a horizontal particle bed. Phys. Rev. E 82, 020301.Google Scholar
Jenkins, J. & Hanes, D. 1998 Collisional sheet flows of sediment driven by a turbulent fluid. J. Fluid Mech. 370, 2952.Google Scholar
Jenkins, J. T. & Valance, A. 2014 Periodic trajectories in aeolian sand transport. Phys. Fluids 26 (7), 073301.Google Scholar
Kok, J. F. & Renno, N. O. 2009 A comprehensive numerical model of steady state saltation (COMSALT). J. Geophys. Res. 114, D17204.CrossRefGoogle Scholar
Kok, J. F., Parteli, E. J. R., Michaels, T. I. & Karam, D. B. 2012 The physics of wind-blown sand and dust. Rep. Prog. Phys. 75 (10), 106901.Google Scholar
Lajeunesse, E., Malverti, L. & Charru, F. 2010 Bed load transport in turbulent flow at the grain scale: experiments and modeling. J. Geophys. Res. 115, F04001.Google Scholar
McTigue, D. F. 1981 Mixture theory for suspended sediment transport. J. Hydraul. Div. ASCE 107, 659673.Google Scholar
Meyer-Peter, E. & Müller, R.1948 Formulas for bed-load transport. In Proceedings of the Second Congress IAHR, Stockolm, Sweden.Google Scholar
Nalpanis, P., Hunt, J. C. R. & Barrett, C. F. 1993 Saltating particles over flat beds. J. Fluid Mech. 251, 661685.Google Scholar
Nelson, J. M., Shreve, R. L., McLean, S. R. & Drake, T. G. 1995 Role of near-bed turbulence in bed load transport and bed form mechanics. Water Resour. Res. 31 (8), 20712086.Google Scholar
Niño, Y. & García, M. 1998 Experiments on saltation of sand in water. J. Hydraul. Engng ASCE 124 (10), 10141025.Google Scholar
Oger, L., Ammi, M., Valance, a. & Beladjine, D. 2005 Discrete element method studies of the collision of one rapid sphere on 2D and 3D packings. Eur. Phys. J. E 17 (4), 467476.Google Scholar
Owen, P. R. 1964 Saltation of uniform grains in air. J. Fluid Mech. 20, 225242.Google Scholar
Pasini, J. M. & Jenkins, J. T. 2005 Aeolian transport with collisional suspension. Phil. Trans. A 363 (1832), 16251646.Google ScholarPubMed
Radice, A., Ballio, F. & Nikora, V. 2009 On statistical properties of bed load sediment concentration. Water Resour. Res. 45 (6), 18.Google Scholar
Sauermann, G., Kroy, K. & Herrmann, H. J. 2001 A continuum saltation model for sand dunes. Phys. Rev. E 64, 031305.Google Scholar
Singh, A., Fienberg, K., Jerolmack, D. J., Marr, J. & Foufoula-Georgiou, E. 2009 Experimental evidence for statistical scaling and intermittency in sediment transport rates. J. Geophys. Res. 114 (1), 116.Google Scholar
Ungar, J. E. & Haff, P. K. 1987 Steady state saltation in air. Sedimentology 34 (2), 289299.Google Scholar
Valance, A., Rasmussen, K. R., El Moctar, A. O. & Dupont, P. 2015 The physics of aeolian sand transport. C. R. Phys. 16 (1), 105117.Google Scholar
van Rijn, L. C. 1984 Sediment transport. Part I. Bed load transport. J. Hydraul. Engng ASCE 110 (10), 14311456.Google Scholar
White, B. R. 1979 Soil transport by winds on Mars. J. Geophys. Res. 84 (B9), 46434651.Google Scholar
Yang, F.-L. & Hunt, M. L. 2006 Dynamics of particle–particle collisions in a viscous liquid. Phys. Fluids 18 (12), 121506.Google Scholar