Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T15:43:29.473Z Has data issue: false hasContentIssue false

Patterning of colloidal droplet deposits on soft materials

Published online by Cambridge University Press:  27 November 2020

Julia Gerber
Affiliation:
Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092Zurich, Switzerland
Thomas M. Schutzius
Affiliation:
Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092Zurich, Switzerland
Dimos Poulikakos*
Affiliation:
Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092Zurich, Switzerland
*
Email address for correspondence: [email protected]

Abstract

The ‘coffee stain ring’ is a particle deposit, that forms naturally, when the liquid of a suspension drop evaporates, leaving the particles at the edge of the deposit. Although observed in coffee cups in everyday life, such deposits appear in a wide range of liquid, particle and surface combinations and have attracted vivid research attention. Previous studies focused on the fluidics of evaporating suspension droplets on rigid materials, where the ring formation was shown to occur for pinned contact lines, and possible suppression of the coffee stain effect with surfactants, or other externally driven means, was investigated. Here, we show that, on soft materials, we can control the topography of the deposit on demand – promoting or suppressing the coffee ring effect – by simply changing the environmental humidity, regulating the evaporative flux. We perform particle tracking of droplets drying on soft substrates at varied environmental conditions and show with experimental observations and theoretical analysis that, at an expedited contact line velocity, particles are advected towards the receding contact line. We relate this advection to the viscous dissipation within the soft solid, retarding the contact line motion. The coffee ring formation in the presence of a receding contact line and its control by the environmental humidity, bring a new perspective to the conditions of the manifestation of this frequent deposit topography. We demonstrate the importance of our findings during the printing of a colloidal line, showing the ability to trigger line bifurcation on soft substrates by regulating the evaporative flux, introducing another degree of controllability for contact printing.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayer, I. S., Caramia, V., Fragouli, D., Spano, F., Cingolani, R. & Athanassiou, A. 2012 Electrically conductive and high temperature resistant superhydrophobic composite films from colloidal graphite. J. Mater. Chem. 22 (5), 20572062.CrossRefGoogle Scholar
Bergert, M., Lendenmann, T., Zündel, M., Ehret, A. E., Panozzo, D., Richner, P., Kim, D. K., Kress, S. J. P., Norris, D. J., Sorkine-Hornung, O., et al. . 2016 Confocal reference free traction force microscopy. Nat. Commun. 7, 12814.CrossRefGoogle ScholarPubMed
Bigioni, T. P., Lin, X.-M., Nguyen, T. T., Corwin, E. I., Witten, T. A. & Jaeger, H. M. 2006 Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat. Mater. 5 (4), 265270.CrossRefGoogle ScholarPubMed
Bračič, M., Mohan, T., Kargl, R., Griesser, T., Hribernik, S., Köstler, S., Stana-Kleinschek, K. & Fras-Zemljič, L. 2014 Preparation of PDMS ultrathin films and patterned surface modification with cellulose. RSC Adv. 4 (23), 1195511961.CrossRefGoogle Scholar
Brutin, D. 2015 Droplet Wetting and Evaporation: from Pure to Complex Fluids. Academic Press.Google Scholar
Carré, A., Gastel, J.-C. & Shanahan, M. E. R. 1996 Viscoelastic effects in the spreading of liquids. Nature 379 (6564), 432434.CrossRefGoogle Scholar
Chen, L., Wang, X., Wen, W. & Li, Z. 2010 Critical droplet volume for spontaneous capillary wrapping. Appl. Phys. Lett. 97 (12), 124103.CrossRefGoogle Scholar
Danov, K. D., Dimova, R. & Pouligny, B. 2000 Viscous drag of a solid sphere straddling a spherical or flat surface. Phys. Fluids 12 (11), 27112722.CrossRefGoogle Scholar
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 1997 Capillary flow as the cause of ring stains from dried liquid drops. Nature 389 (6653), 827829.CrossRefGoogle Scholar
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 2000 Contact line deposits in an evaporating drop. Phys. Rev. E 62 (1), 756.CrossRefGoogle Scholar
Dietzel, M. & Poulikakos, D. 2005 Laser-induced motion in nanoparticle suspension droplets on a surface. Phys. Fluids 17 (10), 102106.CrossRefGoogle Scholar
Einstein, A. 1905 Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, vol. 322. Annalen der Physik.Google Scholar
de Gans, B.-J. & Schubert, U. S. 2004 Inkjet printing of well-defined polymer dots and arrays. Langmuir 20 (18), 77897793.CrossRefGoogle ScholarPubMed
Gerber, J., Lendenmann, T., Eghlidi, H., Schutzius, T. M. & Poulikakos, D. 2019 Wetting transitions in droplet drying on soft materials. Nat. Commun. 10 (1), 4776.CrossRefGoogle ScholarPubMed
Girard, F., Antoni, M. & Sefiane, K. 2008 On the effect of Marangoni flow on evaporation rates of heated water drops. Langmuir 24 (17), 92079210.CrossRefGoogle ScholarPubMed
Harris, D. J., Hu, H., Conrad, J. C. & Lewis, J. A. 2007 Patterning colloidal films via evaporative lithography. Phys. Rev. Lett. 98 (14), 148301.CrossRefGoogle ScholarPubMed
Hu, H. & Larson, R. G. 2002 Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106 (6), 13341344.CrossRefGoogle Scholar
Hu, H. & Larson, R. G. 2005 Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21 (9), 39723980.CrossRefGoogle Scholar
Hu, H. & Larson, R. G. 2006 Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110 (14), 70907094.CrossRefGoogle ScholarPubMed
Kajiya, T., Brunet, P., Royon, L., Daerr, A., Receveur, M. & Limat, L. 2014 A liquid contact line receding on a soft gel surface: dip-coating geometry investigation. Soft Matt. 10 (44), 88888895.CrossRefGoogle ScholarPubMed
Kajiya, T., Daerr, A., Narita, T., Royon, L., Lequeux, F. & Limat, L. 2013 Advancing liquid contact line on visco-elastic gel substrates: stick-slip vs. continuous motions. Soft Matt. 9 (2), 454461.CrossRefGoogle Scholar
Karpitschka, S., Das, S., van Gorcum, M., Perrin, H., Andreotti, B. & Snoeijer, J. H. 2015 Droplets move over viscoelastic substrates by surfing a ridge. Nat. Commun. 6, 7891.CrossRefGoogle ScholarPubMed
Ko, H.-Y., Park, J., Shin, H. & Moon, J. 2004 Rapid self-assembly of monodisperse colloidal spheres in an ink-jet printed droplet. Chem. Mater. 16 (22), 42124215.CrossRefGoogle Scholar
Lafuma, A. & Quéré, D. 2011 Slippery pre-suffused surfaces. Europhys. Lett. 96 (5), 56001.CrossRefGoogle Scholar
Lester, G. R. 1961 Contact angles of liquids at deformable solid surfaces. J. Colloid Sci. 16 (4), 315326.CrossRefGoogle Scholar
Liu, W., Midya, J., Kappl, M., Butt, H.-J. & Nikoubashman, A. 2019 Segregation in drying binary colloidal droplets. ACS Nano 13 (5), 49724979.CrossRefGoogle ScholarPubMed
Lopes, M. C. & Bonaccurso, E. 2013 Influence of substrate elasticity on particle deposition patterns from evaporating water-silica suspension droplets. Soft Matt. 9 (33), 79427950.CrossRefGoogle Scholar
Marín, Á. G., Gelderblom, H., Lohse, D. & Snoeijer, J. H. 2011 Order-to-disorder transition in ring-shaped colloidal stains. Phys. Rev. Lett. 107 (8), 085502.CrossRefGoogle ScholarPubMed
Marín, Á. G., Gelderblom, H., Susarrey-Arce, A., van Houselt, A., Lefferts, L., Gardeniers, J. G. E., Lohse, D. & Snoeijer, J. H. 2012 Building microscopic soccer balls with evaporating colloidal fakir drops. Proc. Natl Acad. Sci. USA 109 (41), 1645516458.CrossRefGoogle ScholarPubMed
Moore, W. J. 1972 Physical Chemistry, 4th edn. Prentice-Hall.Google Scholar
Nguyen, V. X. & Stebe, K. J. 2002 Patterning of small particles by a surfactant-enhanced Marangoni–Bénard instability. Phys. Rev. Lett. 88 (16), 164501.CrossRefGoogle ScholarPubMed
Parisse, F. & Allain, C. 1997 Drying of colloidal suspension droplets: experimental study and profile renormalization. Langmuir 13 (14), 35983602.CrossRefGoogle Scholar
Park, J. & Moon, J. 2006 Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir 22 (8), 35063513.CrossRefGoogle ScholarPubMed
Park, S. J., Weon, B. M., Lee, J. S., Lee, J., Kim, J. & Je, J. H. 2014 Visualization of asymmetric wetting ridges on soft solids with x-ray microscopy. Nat. Commun. 5, 4369.CrossRefGoogle ScholarPubMed
Philipse, A. P. 2018 Brownian Motion. Springer Nature.CrossRefGoogle Scholar
Popov, Y. O. 2005 Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71 (3), 036313.CrossRefGoogle ScholarPubMed
Rainó, G., Becker, M. A., Bodnarchuk, M. I., Mahrt, R. F., Kovalenko, M. V. & Stöferle, T. 2018 Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563 (7733), 671675.CrossRefGoogle ScholarPubMed
Shahidzadeh, N., Schut, M. F. L., Desarnaud, J., Prat, M. & Bonn, D. 2015 Salt stains from evaporating droplets. Sci. Rep. 5 (1), 10335.CrossRefGoogle ScholarPubMed
Shanahan, M. E. R. & Carré, A. 1995 Viscoelastic dissipation in wetting and adhesion phenomena. Langmuir 11 (4), 13961402.CrossRefGoogle Scholar
von Smoluchowski, M. 1906 Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen, vol. 326. Annalen der Physik.Google Scholar
Still, T., Yunker, P. J. & Yodh, A. G. 2012 Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir 28 (11), 49844988.CrossRefGoogle ScholarPubMed
Style, R. W., Boltyanskiy, R., Che, Y., Wettlaufer, J. S., Wilen, L. A. & Dufresne, E. R. 2013 Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys. Rev. Lett. 110, 066103.CrossRefGoogle Scholar
Style, R. W. & Dufresne, E. R. 2012 Static wetting on deformable substrates, from liquids to soft solids. Soft Matt. 8 (27), 71777184.CrossRefGoogle Scholar
Ta, V. D., Dunn, A., Wasley, T. J., Li, J., Kay, R. W., Stringer, J., Smith, P. J., Esenturk, E., Connaughton, C. & Shephard, J. D. 2016 Laser textured superhydrophobic surfaces and their applications for homogeneous spot deposition. Appl. Surf. Sci. 365, 153159.CrossRefGoogle Scholar
Vella, D. & Mahadevan, L. 2005 The ‘cheerios effect’. Am. J. Phys. 73 (9), 817825.CrossRefGoogle Scholar
Vogel, N., Utech, S., England, G. T., Shirman, T., Phillips, K. R., Koay, N., Burgess, I. B., Kolle, M., Weitz, D. A. & Aizenberg, J. 2015 Color from hierarchy: diverse optical properties of micron-sized spherical colloidal assemblies. Proc. Natl Acad. Sci. USA 112 (35), 1084510850.CrossRefGoogle ScholarPubMed
Zhao, M., Dervaux, J., Narita, T., Lequeux, F., Limat, L. & Roché, M. 2018 Geometrical control of dissipation during the spreading of liquids on soft solids. Proc. Natl Acad. Sci. USA 115 (8), 17481753.CrossRefGoogle ScholarPubMed

Gerber et al. supplementary movie 1

Movie showing the contact line motion during colloidal droplet drying on a compliant silicone substrate (E = 12.6 kPa), at T = 22°C and rh = 0%

Download Gerber et al. supplementary movie 1(Video)
Video 48.1 MB

Gerber et al. supplementary movie 2

Movie showing particle tracking during colloidal droplet drying on a compliant substrate in low rh conditions (E = 12.6 kPa, T = 23.7°C and rh = 33.8%).

Download Gerber et al. supplementary movie 2(Video)
Video 39.6 MB

Gerber et al. supplementary movie 3

Movie showing particle tracking during colloidal droplet drying on a compliant substrate in high rh conditions (E = 12.6 kPa, T = 24.7°C and rh = 83.0%).

Download Gerber et al. supplementary movie 3(Video)
Video 37.2 MB