Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-24T21:49:06.810Z Has data issue: false hasContentIssue false

Particle mesh Ewald Stokesian dynamics simulations for suspensions of non-spherical particles

Published online by Cambridge University Press:  04 April 2011

A. KUMAR
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, USA
J. J. L. HIGDON*
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, USA
*
Email address for correspondence: [email protected]

Abstract

A particle mesh Ewald (PME) Stokesian dynamics algorithm has been developed to model hydrodynamic interactions in suspensions of non-spherical dicolloidal particles. Dicolloids, which have recently been synthesized by a number of independent research groups (Johnson, van Kats & van Blaaderen (Langmuir, vol. 21, 2005, p. 11510), Mock et al. (Langmuir, vol. 22, 2006, p. 4037), Kim, Larsen & Weitz (J. Am. Chem. Soc., vol. 128, 2006, p. 14374)), consist of two intersecting spheres of varying radii and centre-to-centre separation. One-body resistance tensors and disturbance velocity fields are computed for general linear flows using a superposition of Stokes singularities along the symmetry axis of the dicolloid particles. The coefficients and the locations of the singularities are optimized to minimize the norm of the velocity error on the particle surface. The one-body solution provides all coefficients required for the far-field many-body interactions in the Stokesian dynamics algorithm. These generalize the analytical results for spheres employed in the classic algorithm. Modified lubrication interaction tensors are developed for dicolloids for the singular near-field lubrication interactions. Accuracy of the one-body solutions and two-body generalized Stokesian dynamics solutions are validated by comparison with high-precision numerical solutions computed with the spectral boundary element method of Muldowney & Higdon (J. Fluid Mech., vol. 298, 1995, p. 167). The newly developed PME Stokesian dynamics algorithm was used to study transport properties in dicolloidal suspensions over a range of volume fractions (φ ≤ 0.5). The effects of the degree of anisotropy on the properties of the suspension are discussed. For these mildly anisotropic particles, the transport properties remain close to those of spheres, however certain interesting trends emerge, with non-monotonic viscosity dependence as a function of increasing aspect ratio. The minimum viscosity in concentrated suspensions is lower than that for spheres with equal volume fraction over a range of volume fractions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Batchelor, G. K. 1970 Slender-body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44, 419440.Google Scholar
Bossis, G. & Brady, J. F. 1984 Dynamic simulation of sheared suspensions. Part i. General method. J. Chem. Phys. 80 (10), 51415154.Google Scholar
Brady, J. F. & Bossis, G. 1988 Stokesian dynamics. Annu. Rev. Fluid Mech. 20 (1), 111157.Google Scholar
Butler, J. E. & Shaqfeh, E. S. G. 2002 Dynamic simulations of the inhomogeneous sedimentation of rigid fibres. J. Fluid Mech. 468, 205237.CrossRefGoogle Scholar
Chwang, A. T. & Wu, T. Y. 1975 Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67, 787815.CrossRefGoogle Scholar
Claeys, I. L. & Brady, J. F. 1989 Lubrication singularities of the grand resistance tensor for two arbitrary particles. Physico-Chem. Hydrodyn. 11, 261293.Google Scholar
Claeys, I. L. & Brady, J. F. 1993 a Suspensions of prolate spheroids in Stokes flow. Part 1. Dynamics of a finite number of particles in an unbounded fluid. J. Fluid Mech. 251, 411442.CrossRefGoogle Scholar
Claeys, I. L. & Brady, J. F. 1993 b Suspensions of prolate spheroids in Stokes flow. Part 2. Statistically homogeneous dispersions. J. Fluid Mech. 251, 443477.Google Scholar
Claeys, I. L. & Brady, J. F. 1993 c Suspensions of prolate spheroids in Stokes flow. Part 3. Hydrodynamic transport properties of crystalline dispersions. J. Fluid Mech. 251, 479500.CrossRefGoogle Scholar
Cox, R. G. 1974 The motion of suspended particles almost in contact. Intl J. Multiphase Flow 1, 343371.CrossRefGoogle Scholar
Donev, A., Cisse, I., Sachs, D., Variano, E. A., Stillinger, F. H., Connelly, R., Torquato, S. & Chaikin, P. M. 2004 Improving the density of jammed disordered packings using ellipsoids. Science 303 (5660), 990993.Google Scholar
Gerbode, S. J., Lee, S. H., Liddell, C. M. & Cohen, , Itai, 2008 Restricted dislocation motion in crystals of colloidal dimer particles. Phys. Rev. Lett. 101, 058302.Google Scholar
Glotzer, S. C. & Solomon, M. J. 2007 Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557562.CrossRefGoogle ScholarPubMed
Guckel, E. K. 1999 Large scale simulations of particulate systems using the PME method. PhD thesis, University of Illinois at Urbana-Champaign.Google Scholar
Happel, J. & Brenner, H. 1991 Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Springer.Google Scholar
Hasimoto, H. 1959 On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5, 317328.Google Scholar
Hosein, I. D. & Liddell, C. M. 2007 Convectively assembled asymmetric dimer-based colloidal crystals. Langmuir 23, 1047910485.Google Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. Ser. A 102 (715), 161179.Google Scholar
Jeffrey, D. J. & Onishi, Y. 1984 Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow. J. Fluid Mech. 139, 261290.Google Scholar
Johnson, P. M., van Kats, C. M. & van Blaaderen, A. 2005 Synthesis of colloidal silica dumbbells. Langmuir 21 (24), 1151011517.Google Scholar
Kim, J. W., Larsen, R. J. & Weitz, D. A. 2006 Synthesis of nonspherical colloidal particles with anisotropic properties. J. Am. Chem. Soc. 128 (44), 1437414377.Google Scholar
Kim, S. & Karrila, S. J. 2005 Microhydrodynamics: Principles and Selected Applications. Dover Publicatons.Google Scholar
Kim, S. & Lu, S. Y. 1987 The functional similarity between Faxen relations and singularity solutions for fluid–fluid, fluid–solid, and solid–solid dispersions. Intl J. Multiphase Flow 13 (6), 837844.Google Scholar
Krieger, I. M. 1973 Rheology of monodisperse latices. Adv. Colloid Interface Sci. 3, 111136.CrossRefGoogle Scholar
Ladd, A. J. C. 1990 Hydrodynamic transport coefficients of random dispersions of hard spheres. J. Chem. Phys. 93 (5), 34843494.CrossRefGoogle Scholar
Lee, S. H., Fung, E. Y., Riley, E. K. & Liddell, C. M. 2009 Asymmetric colloidal dimers under quasi-two-dimensional confinement. Langmuir 25, 71937195.Google Scholar
Mackaplow, M. B. & Shaqfeh, E. S. G. 1996 A numerical study of the rheological properties of suspensions of rigid, non-Brownian fibres. J. Fluid Mech. 329, 155186.Google Scholar
van Megen, W. & Underwood, S. M. 1989 Tracer diffusion in concentrated colloidal dispersions. Part iii. Mean square displacements and self-diffusion coefficients. J. Chem. Phys. 91 (1), 552559.Google Scholar
Meng, Q. & Higdon, J. J. L. 2008 a Large scale dynamic simulation of plate-like particle suspensions. Part i: Non-Brownian simulation. J. Rheol. 52, 136.Google Scholar
Meng, Q. & Higdon, J. J. L. 2008 b Large scale dynamic simulation of plate-like particle suspensions. Part ii: Brownian simulation. J. Rheol. 52, 3765.Google Scholar
Mitragotri, S. & lahann, J. 2008 Physical approaches to biomaterial design. Nature Mater. 8, 1523.CrossRefGoogle Scholar
Mock, E. B., Bruyn, H. De, Hawkett, B. S., Gilbert, R. G. & Zukoski, C. F. 2006 Synthesis of anisotropic nanoparticles by seeded emulsion polymerization. Langmuir 22 (9), 40374043.CrossRefGoogle ScholarPubMed
Mock, E. B. & Zukoski, C. F. 2007 Determination of static microstructure of dilute and concentrated suspensions of anisotropic particles by ultra-small-angle x-ray scattering. Langmuir 23, 87608771.CrossRefGoogle ScholarPubMed
Muldowney, G. P. & Higdon, J. J. L. 1995 A spectral boundary element approach to three-dimensional stokes flow. J. Fluid Mech. 298, 167192.Google Scholar
Phillips, R. J., Brady, J. F. & Bossis, G. 1988 Hydrodynamic transport properties of hard-sphere dispersions. Part i. Suspensions of freely mobile particles. Phys. Fluids 31 (12), 34623472.CrossRefGoogle Scholar
Saintillan, D., Darve, E. & Shaqfeh, E. S. G. 2005 A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: The sedimentation of fibers. Phys. Fluids 17 (3), 033301.CrossRefGoogle Scholar
Segré, P. N., Behrend, O. P. & Pusey, P. N. 1995 Short-time Brownian motion in colloidal suspensions: Experiment and simulation. Phys. Rev. E 52 (5), 50705083.Google Scholar
Shimizu, H. 1962 Effect of molecular shape on nuclear magnetic relaxation. J. Chem. Phys. 37 (4), 765778.Google Scholar
Sierou, A. & Brady, J. F. 2001 Accelerated Stokesian dynamics simulations. J. Fluid Mech. 448, 115146.Google Scholar
Singer, S. J. & Mumaugh, R. 1990 Monte Carlo study of fluid–plastic coexistence in hard dumbbells. J. Chem. Phys. 93 (2), 12781286.CrossRefGoogle Scholar
Solomon, M. J., Zeitoun, R., Ortiz, D., Sung, K. E., Deng, D., Shah, A., Burns, M. A., Glotzer, S. C. & Millunchick, J. M. 2010 Toward assembly of non-close-packed colloidal structures from anisotropic pentamer particles. Macromol. Rapid Commnun. 31, 196201.Google Scholar
Speedy, R. J. 1997 Pressure of the metastable hard-sphere fluid. J. Phys.: Condens. Matter 9 (41), 85918599.Google Scholar
Sung, K. E., Vanapall, S. A., Mukhija, D., McKay, H. A., Burns, J. M. Millunchick, M. A. & Solomon, M. J. 2008 Programmable fluidic production of microparticles with configurable anisotropy. J. Am. Chem. Soc. 130, 13351340.Google Scholar
Vega, C., Paras, E. P. A. & Monson, P. A. 1992 a Solid–fluid equilibria for hard dumbbells via Monte Carlo simulation. J. Chem. Phys. 96 (12), 90609072.CrossRefGoogle Scholar
Vega, C., Paras, E. P. A. & Monson, P. A. 1992 b On the stability of the plastic crystal phase of hard dumbbell solids. J. Chem. Phys. 97 (11), 85438548.Google Scholar
Viera, M. N. 2002 Large scale simulation of Brownian suspensions. PhD thesis, University of Illinois at Urbana-Champaign.Google Scholar
Weinbaum, S. & Ganatos, P. 1990 Numerical multipole and boundary integral equation techniques in Stokes flow. Annu. Rev. Fluid Mech. 22, 275316.Google Scholar
Woodcock, L. V. 1981 Glass transition in the hard-sphere model and Kauzmann's paradox. Ann. N.Y. Acad. Sci. 371, 274298.CrossRefGoogle Scholar
Wu, W. Y. 1984 A new approach of treating the Stokes flow of nonslender prolate arbitrary axisymmetrical body. Sci. Sin. Ser. A 27, 731744.Google Scholar
Zhou, H. & Pozrikidis, C. 1995 Adaptive singularity method for Stokes flow past particles. J. Comput. Phys. 117, 7989.Google Scholar