Published online by Cambridge University Press: 08 January 2008
An analysis is presented of parametric instability in a finite-length rotating cylinder subject to periodic axial compression by small sinusoidal oscillations of one of its ends (the ‘piston’). The instability is due to resonant interactions between inertial-wave (Kelvin) modes of the cylinder and the oscillatory compression and is resisted by viscosity, acting both through thin boundary layers and throughout the volume, the two mechanisms proving crucial for a satisfactory description. Instability is found to take the form of either a single axisymmetric mode with frequency near to half that of compression, or a pair of non-axisymmetric modes of the same azimuthal and axial orders and oppositely signed frequencies, whose difference is close to the compression frequency. Thus, in the axisymmetric case, instability leads to spontaneous growth of a system of one or more oscillating toroidal vortices encircling the cylinder axis, while the differing frequencies of the two modes of non-axisymmetric instability implies an oscillatory aperiodic flow. The neutral curves giving the threshold for instability are determined for all modes/mode pairs. For a given mode or mode pair, the neutral curve shows a critical piston amplitude dependent on rotational Reynolds number and cylinder aspect ratio, below which instability does not occur, and above which there is instability provided the compression frequency is chosen to lie in a band centred on the exact resonance condition.