Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T08:40:38.895Z Has data issue: false hasContentIssue false

Oxygen vibrational and dissociation relaxation behind regular reflected shocks

Published online by Cambridge University Press:  29 March 2006

H. Oertel
Affiliation:
Institut für Strömungslehre und Strömungsmaschinen, Universität Karlsruhe, Germany

Abstract

The oxygen vibrational and dissociation relaxation behind regular reflected shocks has been calculated and measured. Numerical calculations using published rate coefficients supplied the relaxation-zone data needed to estimate the range of most useful experimental conditions. Then photographs of the shock reflexion were taken using a complementary double-exposure interferometer. The density profiles in the relaxation zones behind the reflected shocks were measured by means of a multibeam laser-differential interferometer. The results of these experiments confirmed the theoretical model adopted for the calculations within a certain range of experimental conditions, but clearly revealed the need for revising the rate coefficients. New calculations with different vibrational relaxation times and dissociation rate coefficients then had the result that the best fit of calculated to measured profiles was obtained when the following values were inserted.

Vibration\begin{eqnarray*} & p\tau_v = A_v\exp(B_vT^{-\frac{1}{3}}),\\ & A_v = (2.1\pm 0.2)\times 10^{-5}\,{\rm kg/ms},\quad B_v = 129\,{}^{\circ}{\rm K}^{\frac{1}{3}}. \end{eqnarray*}

Dissociation: O2 + O_2[rlarr ] 2O + O_2 \begin{eqnarray*} & {\mathop {k_1}\limits^{\rightharpoonup}} = A_1T^{-2.5}\exp (-\theta_D/T),\\ & A_1 = (6.2 \pm 0.5)\times 10^{18}\,{\rm m}^3\,{}^{\circ}{\rm K}^{2.5}/{\rm mol}\,{\rm s},\quad\theta_D = 59\,136\,{}^{\circ}{\rm K}. \end{eqnarray*}

Dissociation: O2 + O[rlarr ]3O \begin{eqnarray*} & {\mathop {k_1}\limits^{\rightharpoonup}} = A_2T^{-1.0}\exp (-\theta_D/T),\\ & A_2 = (4.0 \mp 0.5)\times 10^{-13}\,{\rm m}^3\,{}^{\circ}{\rm K}/{\rm mol}\,{\rm s}. \end{eqnarray*}

Type
Research Article
Copyright
© 1976 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkhipov, V. N. & Polenov, A. N. 1969 Chemical relaxation in a viscous shock. Fluid Dyn. 4 (4), 56.Google Scholar
Bernzott, C., Oertel, H. & Schmidt, B. 1976 Oxygen dissociation relaxation behind oblique shocks. To be published.
Blackman, V. H. 1956 Vibration relaxation in oxygen and nitrogen J. Fluid Mech. 1, 61.Google Scholar
Bortner, M. H. & Golden, A. 1961 A critique on reaction rate constant involved in the chemical system of high temperature air. General Elect., R., 61 SD0 23 Me 440.Google Scholar
Bradley, J. N. 1962 Shock Waves in Chemistry and Physics. Wiley.
Bray, K. N. C. 1959 Atomic recombination in a hypersonic wind tunnel nozzle J. Fluid Mech. 6, 1.Google Scholar
Byron, S. R. 1959 Measurement of the rate of dissociation of oxygen J. Chem. Phys. 30, 6.Google Scholar
Camac, M. & Feinberg, R. M. 1967 Comb. Inst., Pittsburgh, Pa., pp. 137145.
Camac, M. & Vaughan, A. 1961 O2 dissociation rates in O2-air mixture. J. Chem. Phys. 34, 2460.Google Scholar
Clarke, J. F. & Mcchesney, M. 1964 The Dynamics of Real Gases Butterworths.
Gaydon, A. G. & Hurle, J. R. 1963 The Shock Tube in High Temperature, Chemical Physics. New York: Reinhold.
Gibson, W. E. & Buckmaster, J. D 1964 Effects of species diffusion and heat conduction on nonequilibrium flows behind strong shocks A.I.A.A. J. 2, 1681.Google Scholar
Hall, J. G. & Russo, A. L. 1967 Recent advances in aerothermo-chemistry Agard Conf. Proc. 12, 443.Google Scholar
Jalbert, P. 1966 Propriétés de l'air à haute température Entropie, 12, 66.Google Scholar
Landau, L. & Teller, E. 1936 Zur Theorie der Schalldispersion Phys. Z. 10, 34.Google Scholar
Law, C. K. 1970 Diffraction of strong shock waves by a sharp compressive corner. UTIAS Tech. Note, no. 150.Google Scholar
Maillie, F. H. & Hsu, C. T. 1968 Relaxation for harmonic and anharmonic oscillators A.I.A.A. J. 6, 564.Google Scholar
Martin, J. J. 1966 Atmospheric Reentry: An Introduction to its Science and Engineering Prentice Hall.
Mathews, D. L. 1959 Interferometric measurement in the shock tube of the dissociation rate of oxygen Phys. Fluids, 2, 170.Google Scholar
Millikan, R. C. & White, D. R. 1963 Systematics of vibrational relaxation J. Chem. Phys. 39, 3209.Google Scholar
Oertel, H. 1966 Stoßrohre. Springer.
Oertel, H. Jr 1974 Berechnungen und Messungen der Dissoziations-relaxation hinter schief reflektierten Stößen in Sauerstoff. Dissertation, Karlsruhe.
Smeets, G. & George, A. 1971 Gasdynamische Untersuchungen im Stoßrohr mit einem hochempfindlichen Laserinterferometer. ISL-Bericht, no. 14/71.Google Scholar
Smeets, G. & George, A. 1972 Doppelbelichtungs-Interferometrie. ISL-Bericht, no. 39/72.Google Scholar
Stricker, J. & Low, W. 1972 Atomic oxygen formation times obtained from measurement of electron-density profiles behind shock-waves in air Phys. Fluids, 15, 2159.Google Scholar
Stupochenko, Y. V., Losev, S. A. & Osipov, A. I. 1967 Relaxation in Shock Waves. Springer.
Taylor, D. K. 1966 Theory of the effects of electronic exitation on the vibrational and dissociative relaxation of diatomic molecules. NOLTR Rep. no. 256.Google Scholar
Vincenti, W. G. & Kruger, C. 1965 Introduction to Physical Gas Dynamics. Wiley.
Wassner, L. 1972 Eindimensionaler und stationärer Verdichtungsstoß unter Berück-sichtigung der Transporterscheinungen, der Relaxation der inneren Molekülfreiheitsgrade und der chemischen Reaktionen. DLR-Forschungsbericht, no. 72810.Google Scholar
Wecken, F. 1968 Daten zur Reaktionskinetik in Luft von 500 °K bis 10000 °K. ISL Bibliografische Notiz, D 4/68.
Weihs, D. & GAL-OR, B. 1972 A new integral-variational method of relaxation regions behind shock and detonation waves Israel J. Tech. 10, 357.Google Scholar
Wettlaufer, D. R. 1969 An interferometric determination of the specific refractivities of the nitrogen and oxygen atoms. UTIAS Tech. Note, no. 175.Google Scholar
White, D. R. & Millikan, R. C. 1963 Vibrational relaxation of oxygen J. Chem. Phys. 39, 1803.Google Scholar
Weay, K. L. 1963 Shock tube study of recombination of O atoms by Ar catalysts at high temperatures J. Chem. Phys. 38, 1518.Google Scholar
Zel'Dovich, Y. B. & Raizer, Y. P. 1967 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic.