Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T07:00:26.176Z Has data issue: false hasContentIssue false

Overstability and inverted bifurcation in homeotropic nematics heated from below

Published online by Cambridge University Press:  19 April 2006

E. Guyon
Affiliation:
Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay
P. Pieranski
Affiliation:
Laboratoire de Physique des Solides, Université Paris-Sud, 91405 Orsay
J. Salan
Affiliation:
E.S.P.C.I. 10, rue Vauquelin, 75005 Paris

Abstract

In nematic homeotropic films (director n perpendicular to the horizontal limiting plates) heated from below, the distortion of the director which is coupled to the ordinary heat convection mechanism responsible for the Rayleigh–Bénard instability exerts a strongly stabilizing influence. Owing to the difference in time scales, an oscillatory instability results whose characteristics are investigated experimentally here. An inverted bifurcation with an associated hysteresis is also obtained and this was studied in some detail. A vertical magnetic field H is also used to align the sample. The decrease of the orientational time constant when H increases leads to marked changes in the overstable regime, which are well described by a simple analysis.

Type
Research Article
Copyright
© 1979 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Busse, F. H. 1972 Oscillatory instability of convection rolls in a low Prandtl fluid. J. Fluid Mech. 52, 97.Google Scholar
Dubois-Violette, E. 1974 Determination of thermal instabilities threshold for homeotropic and planar nematic liquid crystal samples. Solid State Comm. 14, 767.Google Scholar
Dubois-Violette, E., Durand, G., Guyon, E., Manneville, P. & Pieranski, P. To appear in a supplement to Solid State Physics (special issue on liquid crystals).
Dubois-Violette, E., Guyon, E. & Pieranski, P. 1975 Heat convection in a nematic liquid crystal. Mol. Cryst. Liq. Cryst. 26, 193.Google Scholar
Dubois-Violette, E. & Manneville, P. 1978 Stability of Couette flow in nematic liquid crystals. J. Fluid Mech. 89, 273.Google Scholar
Gennes, P. G. De 1974 The Physics of Liquid Crystals, chap. 5. Oxford: Clarendon Press.
Hartshorne, N. H. & Stuart, A. 1970 Crystals and the Polarizing Microscope. London: Edward Arnold.
Hurle, D. T. J. & Jakeman, E. 1971 Soret-driven thermosolutal convection. J. Fluid Mech. 47, 667.Google Scholar
Hurle, D. T. J. & Jakeman, E. 1973 Thermal oscillations in convecting fluids. Phys. Fluids 16, 2056.Google Scholar
Jenkins, J. T. 1978 Flows of nematic liquid crystals. Ann Rev. Fluid Mech. 10, 197.Google Scholar
Lacroix, J. C. 1976 Instabilités hydrodynamiques et électroconvection lors d'injection d'ions dans les liquides isolants. Thèse de Doctorat, Grenoble.
Lekkerkerker, H. N. W. 1977 Oscillatory convective instabilities in nematic liquid crystals. J. Phys. Lett. 38, L 277.Google Scholar
Leslie, F. M. To be published in Advances in Liquid Crystals.
Normand, C., Pomeau, Y. & Velarde, M. G. 1977 Convective instability: a physicist's approach. Rev. Mod. Phys. 49, 581.Google Scholar
Pieranski, P., Brochard, F. & Guyon, E. 1973 Static and dynamic behaviour of a nematic liquid crystal in a magnetic field. Part II: dynamics. J. Phys. 34, 35.Google Scholar
Pieranski, P., Dubois-Violette, E. & Guyon, E. 1973 Heat convection in liquid crystals heated from above. Phys. Rev. Lett. 30, 736.Google Scholar
Pieranski, P. & Guyon, E. 1974 Instability of certain shear flows in nematic liquids. Phys. Rev. A 9, 404.Google Scholar
Platten, J. K. & Chavepeyer, G. 1972 Oscillations in a water — ethanol liquid layer heated from below. Phys. Lett. A 40, 287.Google Scholar
Platten, J. K. & Chavepeyer, G. 1977 Nonlinear two dimensional Bénard convection with Soret effect: free boundaries. Int. J. Heat. Mass Transfer. 20, 113.Google Scholar
Plattef, J. K., Chavepeyer, G& Tellier, J. 1973 Finite amplitude oscillatory motion in the two component Bénard problem. Phys. Lett. A 44, 479.Google Scholar
Prost, J. & Pershan, P. S. 1976 Flexoelectricity in nematic and smectic A liquid crystals. J. Appl. Phys. 47, 2298.Google Scholar
Turner, J. S. 1974 Double-diffusive phenomena. Ann. Rev. Fluid Mech. 6, 37.Google Scholar
Villanove, R., Guyon, E., Mitescu, C. & Pieranski, P. 1974 Mesure de la conductivité thermique et détermination de l'orientation des molécules à l'interface nématique isotrope de MBBA. J. Phys. 35, 153.Google Scholar
Weisfreid, G., Pomeau, Y., Dubois, M., Normand, C. & Bergé, P. 1978 Critical effects in Rayleigh — Bénard convection. J. Phys. 39, 725.Google Scholar