Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T21:46:08.156Z Has data issue: false hasContentIssue false

Oscillatory instability and rupture in a thin melt film on its crystal subject to freezing and melting

Published online by Cambridge University Press:  14 August 2007

M. BEERMAN
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
L. N. BRUSH
Affiliation:
Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA

Abstract

Lubrication theory is used to derive a coupled pair of strongly nonlinear partial differential equations governing the evolution of interfaces separating a thin film of a pure melt from its crystalline phase and from a gas. The free melt–gas (MG) interface deforms in response to the local state of stress and the crystal–melt (CM) interface can deform by freezing and melting only. A linear stability analysis of a static, uniform film subject to the effects of MG interface capillary forces, thermocapillary forces, the latent heat of fusion, van der Waals attraction, heat transfer and solidification volume change effects, reveals stationary and oscillatory instabilities. The effect of a temperature gradient (by increasing the gas phase temperature) is to stabilize a film. As the temperature gradient is reduced, the onset of instability is oscillatory and is at a unique, finite wavenumber. Instability is oscillatory for all marginally stable, non-isothermal cases. Crystals with higher density than the melt are more stable, whereas crystals with lower density are less stable in the presence of an applied temperature gradient. Fully nonlinear numerical solutions show that oscillatory instabilities lead to rupture by growth of standing or travelling waves. Rupture times and the number of oscillations to rupture increase as the temperature gradient is increased. For stationary linearly unstable initial conditions, the CM interface retreats by melting away from the tip region of the encroaching MG interface due to a rise in the heat flux there as the film thins and nears rupture. Larger amplitude disturbances increase the maximum allowable temperature for instability, at a given wavenumber, and decrease the time to rupture at fixed temperature and wavenumber.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajaev, V. S. & Willis, D. A. 2006 Heat transfer, phase change, and thermocapillary flow in films of molten metal on a substrate. Numer. Heat Transfer A 50, 301313.CrossRefGoogle Scholar
Anson, J. P., Drew, R. A. L. & Gruzleski, J. E. 1999 The surface tension of molten aluminum and Ag-Si-Mg alloy under vacuum and hydrogen atmospheres. Metall. Mater. Trans. B 30, 10271032.CrossRefGoogle Scholar
Ashby, M. F., Evans, A. G., Fleck, N. A., Gibson, L. J., Hutchinson, J. W. & Wadley, H. N. G. 2000 Metal Foams: A Design Guide. Butterworth–Heinemann.Google Scholar
Bandyopadhyay, D., Gulabani, R. & Sharma, A. 2005 Instability and dynamics of thin liquid bilayers. Indust. Engng Chem. Res. 44, 12591272.CrossRefGoogle Scholar
Banhart, J. 2001 Manufacture, characterization and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559632.CrossRefGoogle Scholar
Burelbach, J., Bankoff, S. & Davis, S. 1988 Nonlinear stability of evaporating/condensing liquid films. J. Fluid Mech. 195, 463494.CrossRefGoogle Scholar
Chernov, A. A. & Temkin, D. E. 1976 Capture of inclusions in crystal growth. In Current Topics in Materials Science, Vol. 2 (ed. Kaldis, E.), pp. 377. North-Holland.Google Scholar
Dash, J., Fu, H. & Wettlaufer, J. 1995 The premelting of ice and its environmental consequences. Rep. Prog. Phys. 58, 115167.CrossRefGoogle Scholar
Davis, S. H. 2000 Interfacial fluid dynamics. In Perspectives in Fluid Dynamics (ed. Batchelor, G. K., Moffatt, H. K. & Worster, M. G.), pp. 149. Cambridge University Press.Google Scholar
Dinsdale, A. T. & Quested, P. N. 1999 The viscosity of aluminium and its alloys: A review of data and models. J. Materials Sci. 39, 72217228.CrossRefGoogle Scholar
Erneaux, T. & Davis, S. H. 1992 Nonlinear rupture of free films. Phys. Fluids 5, 11171122.CrossRefGoogle Scholar
Fisher, L. S. & Golovin, A. A. 2005 Nonlinear stability analysis of a two layer thin liquid film: Dewetting and autophobic behavior. J. Colloid Interface Sci. 291, 515528.CrossRefGoogle ScholarPubMed
Frenken, J. W. M. & van der Veen, J. F. 1985 Observation of surface melting. Phys. Rev. Lett. 54, 134137.CrossRefGoogle ScholarPubMed
Hur, B. Y., Park, S. H. & Hiroshi, A. 1989 Viscosity and surface tension of Al and effects of additional element. In Eco-Materials Processing and Design, Mater. Sci. Forum 439, 5156.Google Scholar
Israelachvili, J. N. 1991 Intermolecular and Surface Forces. Academic.Google Scholar
Kao, J. C.-T., Golovin, A. A. & Davis, S. H. 2006 Rupture of thin films with resonant substrate patterning. J. Colloid Interface Sci. 303, 532545.CrossRefGoogle ScholarPubMed
Oron, A., Davis, S. & Bankoff, S. 1997 Long scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931980.CrossRefGoogle Scholar
Pluis, B., van der Gon, A. D., Frenken, J. & vander Veen, J. der Veen, J. 1987 Crystal-face-dependence of surface melting. Phys. Rev. Lett. 59, 26782681.CrossRefGoogle ScholarPubMed
Pluis, B., Taylor, T. N., Frenkel, D. & van der Veen, J. F. 1989 Role of long range interactions in the melting of a metallic surface. Phys. Rev. B 40, 13531356.CrossRefGoogle ScholarPubMed
Ruckenstein, E. & Jain, R. 1974 Spontaneous rupture of thin liquid films. Chem. Soc. Faraday Trans. 70, 132147.CrossRefGoogle Scholar
Shampine, L. F. & Reichelt, M. W. 1997 The MATLAB ode suite. SIAM J. Sci. Comput. 18, 122.CrossRefGoogle Scholar
Sheludko, A. 1967 Thin liquid films. Adv. Colloid Interface Sci. 1, 391463.CrossRefGoogle Scholar
Tartaglino, U., Zykova-Timan, T., Ercolesi, F. & Tosatti, E. 2005 Melting and non-melting of solid surfaces and nanosystems. Phys. Rep. 411, 291321.CrossRefGoogle Scholar
VanHook, S. J., Schatz, M. F., McCormick, W. D., Swift, J. B. & Swinney, H. L. 1995 Long-wavelength instability in surface-tension driven Bénard convection. Phys. Rev. Lett. 75, 43974400.CrossRefGoogle ScholarPubMed
Weaire, D. & Hutzler, S. 1999 The Physics of Foam. Oxford University Press.Google Scholar
Wettlaufer, J. S. & Worster, M. G. 2006 Premelting dynamics. Annu. Rev. Fluid Mech. 38, 427452.CrossRefGoogle Scholar
Wettlaufer, J., Worster, M. G., Wilen, L. A. & Dash, J. G. 1996 A theory of premelting dynamics for all power law forces. Phys. Rev. Lett. 76, 36023605.CrossRefGoogle ScholarPubMed
Wettlaufer, J., Worster, M. G. & Wilen, L. 1997 Premelting dynamics: Geometry and interactions. J. Phys. Chem. B 101, 61376141.CrossRefGoogle Scholar
Wheeler, A. A. 1993 Handbook of Crystal Growth, Vol. 1. Elsevier.Google Scholar
Wilen, L. A, Wettlaufer, J. S., Elbaum, M. & Schick, M. 1995 Dispersion-force effects in interfacial premelting of ice. Phys. Rev. B 52, 1242612433.CrossRefGoogle ScholarPubMed
Williams, M. & Davis, S. H. 1982 Nonlinear theory of film rupture. J. Colloids Interface Sci. 90, 220228.CrossRefGoogle Scholar
Wu, Q. & Wong, H. 2004 A slope-dependent disjoining pressure for non-zero contact angles. J. Fluid Mech. 506, 157185.CrossRefGoogle Scholar
Zhang, W. W. & Lister, J. R. 1999 Similarity solutions for the van der Waals rupture of a thin film on a solid substrate. Phys. Fluids 11, 24542462.CrossRefGoogle Scholar