Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T22:11:22.476Z Has data issue: false hasContentIssue false

Oscillatory instabilities produced by heat from a temperature-controlled hot wire below an interface

Published online by Cambridge University Press:  26 April 2006

C. Rozé
Affiliation:
Laboratoire d'Energétique des Systèmes et Procédés, URA CNRS no. 230, INSA de Rouen, BP 08-76131-Mont Saint Aignan Cedex, France
G. Gouesbet
Affiliation:
Laboratoire d'Energétique des Systèmes et Procédés, URA CNRS no. 230, INSA de Rouen, BP 08-76131-Mont Saint Aignan Cedex, France
R. Darrigo
Affiliation:
Laboratoire d'Energétique des Systèmes et Procédés, URA CNRS no. 230, INSA de Rouen, BP 08-76131-Mont Saint Aignan Cedex, France

Abstract

New experimental results are reported for the motion of a liquid surface caused by the heat released from a hot wire below the surface. Starting from a base state with steady convection and steady deformation of the free surface caused by variations in surface tension and heat transport to the surface, the system loses its stability through a supercritical Hopf bifurcation occurring on a curve fT*, d) = 0 in which d is the distance between hot wire and surface and ΔT* a critical temperature difference. These experiments are a model for more complex laser heating experiments in which chaotic motions may occur. Some emphasis is placed on the characterization of propagating waves produced on the surface after the occurrence of the bifurcation.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthore, R., Flament, P., Gouesbet, G., Rhazi, M. & Weill, M. E. 1982 A note on the interaction between a laser beam and some liquid media. Appl. Optics 21, 2.Google Scholar
Bazhenov, V. Y., Vasnetsov, M. V., Soskin, M. S. & Taranenko, V. B. 1989a Self-oscillations of a liquid near a free surface during continuous local heating. JETP Lett. 49, 376.Google Scholar
Bazhenov, V. Y., Vasnetsov, M. V., Soskin, M. S. & Taranenko, V. B. 1989b Dynamics of laser-induced bubble and free-surface oscillations in an absorbing liquid. Appl. Phys. B 49, 485.Google Scholar
Bergé, P., Pomeau, Y. & Vidal, C. 1984 L'ordre dans le Chaos. Hermann.
Devaney, R. L. 1987 An Introduction to Chaotic Dynamical Systems. Addison-Wesley.
Garcia-Ybarra, P. L., Castillo, J. L. & Velarde, M. G. 1987 Bénard–Marangoni convection with a deformable interface and poorly conducting boundaries. Phys. Fluids 30, 2655.Google Scholar
Garcia-Ybarra, P. L. & Velarde, M. G. 1987 Oscillatory Marangoni–Bénard interfacial and capillary–gravity waves in single- and two-component liquid with or without Soret thermal diffusion. Phys. Fluids 30, 1649.Google Scholar
Gouesbet, G. 1987 New presentation of experimental results for overstability phenomena produced by a hot-wire located near and below a free surface. Phys. Chem. Hydrodyn. 8, 349.Google Scholar
Gouesbet, G. 1990a Dynamical states and bifurcations in a new thermo-dynamical system: opticalheartbeats and associated phenomena. Entropie, no. 153/154.
Gouesbet, G. 1990b Simple model for bifurcations ranging up to chaos in thermal lens oscillations and associated phenomena. Phys. Rev. A 41, 5928.Google Scholar
Gouesbet, G. & Lefort, E. 1987 Thermal lens oscillations at low laser powers. Appl. Optics 26, 2940.Google Scholar
Gouesbet, G. & Lefort, E. 1988 Dynamical states and bifurcations of a thermal lens using spectral analysis. Phys. Rev. A 37, 4903.Google Scholar
Gouesbet, G. & Maquet, J. 1989 Examination of an analogy toward the understanding of thermal lens oscillations. AIAA J. Thermodyn. Heat Transfer 3, 27.Google Scholar
Gouesbet, G., Maquet, J., Rozé, C. & Darrigo, R. 1990 Surface tension- and coupled buoyancy-driven instability in a horizontal liquid layer. Overstability and exchange of stability. Phys. Fluids A 2, 903.Google Scholar
Gouesbet, G., Rhazi, M. & Weill, M. E. 1983 A new heart-beating phenomenon and the concept of 2D-optical turbulence. Appl. Optics 22, 304.Google Scholar
Gouesbet, G., Rozé, C. & Maquet, J. 1992 Overstability in an infinite liquid layer under simultaneous surface tension, buoyancy and shear effects. Proc. Intl Symp. on Instabilities in Multiphase Flows, Rouen, May 11–14, 1992. (in press.)
Gouesbet, G. & Sukhodol'skii, A. T. 1992 Opportunity of investigation of fluid interface instability and solar thermocapillarity phenomena in space. In Hydrodynamics and Heat/Mass Transfer in Microgravity, pp. 331334. Gordon and Breach.
Gouesbet, G., Weill, M. E. & Lefort, E. 1986 Convective and free surface instabilities provoked by heating below an interface. AIAA J. 24, 1324.Google Scholar
Guckhenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer.
Joseph, D. D. 1976 Stability of Fluid Motions. Springer.
Kayser, W. V. & Berg, J. C. 1973 Surface relief accompanying natural convection in liquid pools heated from below. J. Fluid Mech. 57, 739.Google Scholar
Landau, L. & Lifshitz, E. 1971 Mécanique des Fluides. Moscow: MIR Editions.
Lorenz, E. N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130.Google Scholar
Maquet, J., Gouesbet, G. & Berlemont, A. 1967 A computer code for natural convection in an enclosed cavity with a free surface. In Proc. Intl Conf. Numerical Methods in Thermal Problems, vol. 5, part I (ed. R. W. Lewis, K. Morgan & W. G. Habashi), pp. 472483. Swansea: Pineridge.
Meunier-Guttin-Cluzel, S. 1990 Caractérisations et modélisations des régimes chaotiques de la lentille thermique. Thèse de doctorat, Université de Rouen.
Paranthoën, P. & Petit, C. 1979 Influence de la conduction entre le capteur et ses supports sur la mesure des fluctuations de température dans un écoulement turbulent effectué à l'aide d'un thermomètre à résistance. Lett. Heat Mass Transfer 6, 311.Google Scholar
Perez-Garcia, C. & Carneiro, G. 1991 Linear stability analysis of Bénard–Marangoni convection in fluids with a deformable free surface. Phys. Fluids A 3, 292.Google Scholar
Reiman, J. 1973 Experimental investigation of free convection flow from wires in the vicinity of phase interfaces. Intl J. Heat Mass Transfer 17, 1051.Google Scholar
Rozé, C., Gouesbet, G. & Maquet, J. 1990 Overstability under simultaneous surface tension, buoyancy and shear effects in a horizontal liquid layer. 28th AIAA Aerospace Sciences Meeting, 8–11 January 1991, Reno, USA.
Schorr, A. W. & Gebhart, B. 1970 An experimental investigation of natural convection wakes above a line heat source. Intl J. Heat Mass Transfer 13, 557.Google Scholar
Takashima, M. 1981a Surface tension driven instability in a horizontal liquid with a deformable free surface. I. Stationary convection. J. Phys. Soc. Japan 50, 2745.Google Scholar
Takashima, M. 1981b Surface tension driven instability in a horizontal liquid with a deformable freesurface. II. Overstability. J. Phys. Soc. Japan 50, 2751.Google Scholar
Thompson, J. M. T. & Stewart, H. B. 1987 Nonlinear Dynamics Systems and Chaos. John Wiley and Sons.
Viznyuk, S. A. & Sukhodol'skii, A. T. 1988 Capillary–gravity instability of fluid motion with continuous laser heating. Sov. Phys. Tech. Phys. 33, 609.Google Scholar
Weill, M. E., Rhazi, M. & Gouesbet, G. 1982 Oscillations d'une surface libre chauffée sous l'interface à l'aide d'un fil. C. R. Acad. Sci. Paris 294, 567.Google Scholar
Weill, M. E., Rhazi, M. & Gouesbet, G. 1985 Experimental investigation of oscillatory phenomena produced by a hot-wire located near and below a free surface. J. Phys. Paris 46, 1501.Google Scholar
Zierepl, J. & Oertell, H. (Ed.) 1982 Connective Transport and Instability Phenomena. Karlsruhe: Braun.