Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T21:58:00.159Z Has data issue: false hasContentIssue false

Oscillatory forcing of flow through porous media. Part 1. Steady flow

Published online by Cambridge University Press:  02 September 2002

D. R. GRAHAM
Affiliation:
Department of Chemical Engineering, University of Illinois, Urbana, IL 61801, USA
J. J. L. HIGDON
Affiliation:
Department of Chemical Engineering, University of Illinois, Urbana, IL 61801, USA

Abstract

Oscillatory forcing of a porous medium may have a dramatic effect on the mean flow rate produced by a steady applied pressure gradient. The oscillatory forcing may excite nonlinear inertial effects leading to either enhancement or retardation of the mean flow. Here, in Part 1, we consider the effects of non-zero inertial forces on steady flows in porous media, and investigate the changes in the flow character arising from changes in both the strength of the inertial terms and the geometry of the medium. The steady-state Navier–Stokes equations are solved via a Galerkin finite element method to determine the velocity fields for simple two-dimensional models of porous media. Two geometric models are considered based on constricted channels and periodic arrays of circular cylinders. For both geometries, we observe solution multiplicity yielding both symmetric and asymmetric flow patterns. For the cylinder arrays, we demonstrate that inertial effects lead to anisotropy in the effective permeability, with the direction of minimum resistance dependent on the solid volume fraction. We identify nonlinear flow phenomena which might be exploited by oscillatory forcing to yield a net increase in the mean flow rate. In Part 2, we take up the subject of unsteady flows governed by the full time-dependent Navier–Stokes equations.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)