Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T19:18:22.949Z Has data issue: false hasContentIssue false

Oscillatory flow in a tube of time-dependent curvature. Part 1. Perturbation to flow in a stationary curved tube

Published online by Cambridge University Press:  25 March 1999

S. L. WATERS
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge, CB3 9EW, UK
T. J. PEDLEY
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge, CB3 9EW, UK

Abstract

Motivated by the study of blood flow in the coronary arteries, this paper examines the flow of an incompressible Newtonian fluid in a tube of time-dependent curvature. The flow is driven by an oscillatory pressure gradient with the same dimensionless frequency, α, as the curvature variation. The dimensionless governing parameters of the flow are α, the curvature ratio δ0, a secondary streaming Reynolds number Rs and a parameter Rt representing the time-dependence of curvature. We consider the parameter regime δ0<Rt<1 (Rs and α remain O(1) initially) in which the effect of introducing time-dependent curvature is to perturb the flow driven by an oscillatory pressure gradient in a fixed curved tube. Flows driven by low- and high-frequency pressure gradients are then considered. At low frequency (δ0<Rt<α<1) the flow is determined by using a sequence of power series expansions (Rs=O(1)). At high frequency (δ0<Rt<1/α2<1) the solution is obtained using matched asymptotic expansions for the region near the wall (Stokes layer) and the region away from the wall in the interior of the pipe. The behaviour of the flow in the interior is then determined at both small and intermediate values of Rs. For both the low and high frequency cases, we find the principal corrections introduced by the time-varying curvature to the primary and secondary flows, and hence to the wall shear stress. The physiological application to flow in the coronary arteries is discussed.

Type
Research Article
Copyright
© 1999 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)