Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T21:41:12.584Z Has data issue: false hasContentIssue false

Oscillating flow of a heat-conducting fluid in a narrow tube

Published online by Cambridge University Press:  26 April 2006

Luc Bauwens
Affiliation:
The University of Calgary, Department of Mechanical Engineering, Calgary, AB T2N 1N4, Canada e-mail: [email protected]

Abstract

Thermoacoustic refrigeration occurs in periodic flow in a duct with heat transfer within the fluid and to the tube. This study considers the periodic limit cycle with large pressure oscillations that is obtained in a tube when prescribed, phase-shifted, periodic velocities at the tube ends, at frequencies lower than acoustic eigenmodes, sweep a length comparable to the tube length. The temperature differences between the two ends are of arbitrary magnitude, heat transfer in the transverse direction within the fluid is assumed to be very effective and the thermal mass of the wall is large. The geometry is two-dimensional, axisymmetric, and conduction is accounted for, not only in the fluid, but also with and within the tube wall. A perturbation solution valid in a local near-isothermal limit determines the equilibrium longitudinal temperature profile that is reached at the periodic regime, the pressure field including longitudinal gradients, and the longitudinal enthalpy flux. Results are presented for tubes open at both ends and also with one end closed. In the latter case, a singularity occurs in the temperature at the closed end, with behaviour identical to Rott's result for acoustic flow with small pressure amplitude. Other new results obtained for tubes open at both ends show that when velocities at both ends are in opposite phase, internal singularities in the temperature profiles may occur.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauwens, L. 1995 The near-isothermal regenerator: a perturbation analysis. J. Thermophys. Heat Transfer 9, 749756.Google Scholar
Bauwens, L. 1996 Entropy balance and performance characterization of the narrow basic pulse-tube refrigerator. J. Thermophys. Heat Transfer (in press).Google Scholar
Bauwens, L. & Mitchell, M. P. 1991 Regenerator analysis: validation of the MS*2 Stirling cycle code. In Proc. XVIIIth Intl Congress of Refrigeration, vol. iii, pp. 930934. International Institute of Refrigeration Paris.
Boer, P. C. T. de 1994 Thermodynamic analysis of the basic pulse-tube refrigerator. Cryogenics 3, 699712.Google Scholar
Boer, P. C. T. de 1995 Analysis of basic pulse-tube refrigerator with regenerator. Cryogenics 35, 547553.Google Scholar
Gary, J. & Radebaugh, R. 1989 A numerical model for regenerator performance [REGEN 3]. Interim Report for Period May 1987 December 1988. Flight Dynamics Laboratory, Wright—Patterson AFB, Rep. WRDC-TR-89-3049.
Gedeon, D. R. 1986 A globally-implicit Stirling cycle simulation. Proc. 21st Intersociety Energy Conversion Engineering Conference, ACS, Washington, DC, pp. 550556.
Gifford, W. E. & Longsworth, R. C. 1964 Pulse-tube refrigeration. Trans ASME B: J. Engng Indust. 86, 264268.Google Scholar
Gifford, W. E. & Longsworth, R. C. 1966 Surface heat pumping. Adv. Cryogenic Engng 11, 171179.Google Scholar
Gu, Y. & Timmerhaus, K. D. 1994 Experimental verification of stability characteristics for thermal acoustic oscillations in a liquid helium system. Adv. Cryogenic Engng 39B, 17331740.Google Scholar
Hausen, H. 1929 Über die Theorie des Wärmeaustausches in Regeneratoren. Z. Angew. Math. Mech. 9, 173200.Google Scholar
Kirchhoff, G. 1868 Über den Einfluss der Wärmeaustausches in Regeneratoren. Z. Angew. Math. Mech. 9, 173200.Google Scholar
Kirchhoff, G. 1868 Über den Einfluss der Wärmeleitung in einem Gas auf die Schallbewegungen. Ann. Phys. Leipzig (2) 134, 177193.Google Scholar
Kittel, P. 1992 Ideal orifice pulse tube refrigerator performance. Cryogenics 32, 843844.Google Scholar
Kramers, H. A. 1949 Vibrations of a gas column. Physica 15, 971984.Google Scholar
Lee, J. M., Kittel, P., Timmerhaus, K. D. & Radebaugh, R. 1995 Steady secondary momentum and enthalpy streaming in the pulse tube refrigerator. In Cryocoolers 8 (ed. R. J. Ross), pp. 359369. Plenum.
Merkli, P. & Thomann, H. 1975 Thermoacoustic effects in a resonance tube. J. Fluid Mech. 70, 161177.Google Scholar
Mirels, H. 1994a Effect of orifice flow and heat transfer on gas spring hysteresis. AIAA J. 32, 16621669.Google Scholar
Müller, U. A. & Rott, N. 1983 Thermally driven acoustic oscillations, Part VI: Excitation and power. Z. Angew. Math. Phys. 34, 610626.Google Scholar
Olson, J. R. & Swift, G. W. 1994 Similitude in thermoacoustics. J. Acoust. Soc. Am. 95, 14051412.Google Scholar
Organ, A. J. 1992 Thermodynamics and Gas Dynamics of the Stirling Cycle Machine. Cambridge University Press.
Qvale, E. B. & Smith, J. L. Jr 1969 An approximate solution for the thermal performance of a Stirling-engine regenerator. Trans. ASME A: J. Engng Power 2, 109112.Google Scholar
Radebaugh, R. 1990 A review of pulse tube refrigeration. Adv. Cryog. Engng 35, 11911206.Google Scholar
Rayleigh, Lord 1896 Theory of Sound, 2nd Edn, vol. 2, Mcmillan.
Rea, S. N. & Smith, J. L. Jr 1967 The influence of pressure cycling on thermal regenerators. Trans. ASME B: J. Engng Indust. 89, 563569.Google Scholar
Rott, N. 1969 Damped and thermally driven acoustic oscillations in wide and narrow tubes. Z. Angew. Math. Phys. 20, 230243.Google Scholar
Rott, N. 1973 Thermally driven acoustic oscillations, Part II: Stability limits for helium. Z. Angew. Math. Phys. 24, 5472.Google Scholar
Rott, N. 1975 Thermally driven acoustic oscillations, Part III: Second order heat flux. Z. Angew. Math. Phys. 26, 4349.Google Scholar
Rott, N. 1984 Thermoacoustic heating at the closed end of an oscillating gas column. J. Fluid Mech. 145, 19.Google Scholar
Rott, N. & Zouzoulas, G. 1976 Thermally driven acoustic oscillations, Part IV: Tubes with variable cross-section. Z. Angew. Math. Phys. 27, 197224.Google Scholar
Rudman, I. Kh. 1994 Flow rate instabilities under self-sustained cooling. Cryogenics 34, 555562.Google Scholar
Schmidt, F. W. & Willmott, A. J. 1981 Thermal Energy Storage and Regeneration. Hemisphere.
Schmidt, G. 1871 Theorie der Lehmann'schen kalorische Maschine. Z. Vereins Deutsch. Ing. 15, No. 1, 112.Google Scholar
Sprenger, H. 1954 Über die thermische Effekte in Resonanzrohren. Mitt. I.f.A.E., Eidgenössische Technische Hochschule, Zürich, No. 21, p. 18.
Storch, P. J. & Radebaugh, R. 1988 Development and experimental test of an analytical model of the orifice pulse tube refrigerator. Adv. Cryo. Engng 33, 851859.Google Scholar
Swift, G. W. 1988 Thermoacoustic engines. J. Acoust. Soc. Am. 84, 1145.Google Scholar
Swift, G. W. & Ward, W. C. 1995 Simple harmonic analysis of stacked-screen regenerators. Los Alamos National Laboratory Rep. LA-UR-95-1577; also J. Thermophys. Heat Transfer (submitted).Google Scholar
Taconis, K. W., Beenakker, J. J. M., Nier, A. O. C. & Aldrich, L. T. 1949 Measurements concerning the Vapour—Liquid Equilibrium of Solutions of He3 in He4 below 2.19 K. Physica 15, 733739.Google Scholar
Thomann, H. 1976 Acoustic streaming and thermal effects in pipe flow with high viscosity. Z. Angew. Math. Phys. 27, 709715.Google Scholar
Urieli, I. & Berchowitz, D. M. 1984 Stirling engine Analysis. Bristol: Adam Hilger.
West, C. 1993 Some single-piston closed-cycle machines and Peter Tailer's thermal lag engine. In Proc. 28th IECEC, American Chemical Society, vol. 2, pp. 673679.
Wheatley, J., Hofler, T., Swift, G. W. & Migliori, A. 1983 An intrinsically irreversible thermoacoustic heat engine. J. Acoust. Soc. Am. 74, 153170.Google Scholar
Zouzoulas, G. & Rott, N. 1976 Thermally driven acoustic oscillations. Part V: Gas—Liquid oscillations. Z. Angew. Math. Phys. 27, 326334.Google Scholar