Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T18:34:21.124Z Has data issue: false hasContentIssue false

The origin of the stationary frontal wave packet spontaneously generated in rotating stratified vortex dipoles

Published online by Cambridge University Press:  23 November 2007

ÁLVARO VIÚDEZ*
Affiliation:
Institut de Ciències del Mar, CSIC, 08003 Barcelona, Spain

Abstract

The origin of the stationary frontal wave packet spontaneously generated in rotating and stably stratified vortex dipoles is investigated through high-resolution three-dimensional numerical simulations of non-hydrostatic volume-preserving flow under the f-plane and Boussinesq approximations. The wave packet is rendered better at mid-depths using ageostrophic quantities like the vertical velocity or the vertical shear of the ageostrophic vertical vorticity. The analysis of the origin of vertical velocity anomalies in shallow layers using the generalized omega-equation reveals that these anomalies are related to the material rate of change of the ageostrophic differential vorticity, which in shallow layers are themselves related to the large-scale ageostrophic flow along the dipole axis, and in particular, to the advective acceleration. It is found that on the anticyclonic side of the dipole axis the combined effect of the speed and centripetal accelerations causes an anticyclonic rotation of the horizontal ageostrophic vorticity vector in a time scale of about one inertial period. These facts support the hypothesis that the origin of the stationary and spontaneously generated frontal wave packet at mid-depths is the large acceleration of the fluid particles as they move along the anticyclonic side of the dipole axis in shallow layers.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bosart, L. F., Bracken, W. E. & Seimon, A. 1998 A study of cyclone mesoscale structure with emphasis on a large-amplitude inertia–gravity wave. Mon. Wea. Rev. 126, 14971527.2.0.CO;2>CrossRefGoogle Scholar
Chow, K. C., Chan, K. L. & Lau, A. K. H. 2002 Generation of moving spiral bands in tropical cyclones. J. Atmos. Sci. 59, 29302950.2.0.CO;2>CrossRefGoogle Scholar
Dritschel, D. G. & Viúdez, A. 2003 A balanced approach to modelling rotating stably-stratified geophysical flows. J. Fluid Mech. 488, 123150.CrossRefGoogle Scholar
Farge, M. & Sadourny, R. 1989 Wave-vortex dynamics in rotating shallow water. J. Fluid Mech. 206, 433462.CrossRefGoogle Scholar
Ford, R. 1994 Gravity wave radiation from vortex trains in rotating shallow water. J. Fluid Mech. 281, 81118.CrossRefGoogle Scholar
Ford, R., McIntyre, M. E. & Norton, W. A. 2000 Balance and the slow quasimanifold: some explicit results. J. Atmos. Sci. 57, 12361257.2.0.CO;2>CrossRefGoogle Scholar
Fritts, D. C. & Luo, Z. 1992 Gravity wave excitation by geostrophic adjustment of the jet stream. part i: Two-dimensional forcing. J. Atmos. Sci. 49, 681697.2.0.CO;2>CrossRefGoogle Scholar
Griffiths, M. & Reeder, M. J. 1996 Stratospheric inertia–gravity waves generated in a numerical model of frontogenesis: I: Model solutions. Q. J. R. Met. Soc. 122, 11531174.Google Scholar
Lane, T. P., Doyle, J. D., Plougonven, R., Shapiro, M. A. & Sharman, R. D. 2004 Observations and numerical simulations of inertia–gravity waves and shearing instabilities in the vicinity of a jet stream. J. Atmos. Sci. 61, 26922706.CrossRefGoogle Scholar
Lane, T. P., Reeder, M. J. & Clark, T. L. 2001 Numerical modeling of gravity wave generation by deep tropical convection. J. Atmos. Sci. 58, 12491274.2.0.CO;2>CrossRefGoogle Scholar
Lorenz, E. N. & Krishnamurthy, V. 1987 On the nonexistence of a slow manifold. J. Atmos. Sci. 44, 29402950.2.0.CO;2>CrossRefGoogle Scholar
Luo, Z. & Fritts, D. C. 1993 Gravity wave excitation by geostrophic adjustment of the jet stream. part i: Three-dimensional forcing. J. Atmos. Sci. 50, 104115.2.0.CO;2>CrossRefGoogle Scholar
McWilliams, J. C. & Yavneh, I. 1998 Fluctuation growth and instability associated with a singularity of the balance equations. Phys. Fluids 10, 25872596.CrossRefGoogle Scholar
Miropol'sky, Yu. Z. 2001 Dynamics of Internal Gravity Waves in the Ocean. Kluwer.CrossRefGoogle Scholar
Nappo, C. J. 2002 An Introduction to Atmospheric Gravity Waves. Academic.Google Scholar
O'Sullivan, D. & Dunkerton, T. J. 1995 Generation of inertia–gravity waves in a simulated life-cycle of baroclinic instability. J. Atmos. Sci. 52, 36953716.2.0.CO;2>CrossRefGoogle Scholar
Pallàs-Sanz, E. & Viúdez, A. 2007 Three-dimensional ageostrophic motion in mesoscale vortex dipoles. J. Phys. Oceanogr. 37, 84105.CrossRefGoogle Scholar
Pfister, L., Chan, K. R., Bui, T. P, Bowen, S., Legg, M., Gary, B., Kelly, K., Proffitt, M. & Starr, W. 1993 Gravity-waves generated by a tropical cyclone during the step tropical program – a case-study. J. Geophys. Res. 95, 86118638.CrossRefGoogle Scholar
Plougonven, R., Teitelbaum, H. & Zeitlin, V. 2003 Inertia gravity wave generation by the tropospheric midlatitude jet as given by the fronts and atlantic storm-track experiment. J. Geophys. Res. 108, doi:10.1029/2003JD003535.Google Scholar
Reeder, M. J. & Griffiths, M. 1996 Stratospheric inertia–gravity waves generated in a numerical model of frontogenesis: Ii: Wave sources, generation mechanisms and momentum fluxes. Q. J. R. Met. Soc. 122, 11751195.Google Scholar
Saujani, S. & Shepherd, T. G. 2002 Comments on “balance and the slow quasimanifold: some explicit results”. J. Atmos. Sci. 59, 28742877. Reply: J. Atmos. Sci. 59, 28782882.2.0.CO;2>CrossRefGoogle Scholar
Snyder, C., Muraki, D. J., Plougonven, R. & Zhang, F. 2007 Inertia–gravity waves generated within a dipole vortex. J. Atmos. Sci. (in press).CrossRefGoogle Scholar
Snyder, C., Skamarock, W. C. & Rotunno, R. 1993 Frontal dynamics near and following frontal collapse. J. Atmos. Sci. 50, 31943211.2.0.CO;2>CrossRefGoogle Scholar
Vanneste, J. & Yavneh, I. 2004 Exponentially small inertia–gravity waves and the breakdown of quasigeostrophic balance. J. Atmos. Sci. 61, 211223.2.0.CO;2>CrossRefGoogle Scholar
Viúdez, A. 2006 Spiral patterns of inertia–gravity waves in geophysical flows. J. Fluid Mech. 562, 7382.CrossRefGoogle Scholar
Viúdez, A. 2007 The stationary frontal wave packet spontaneously generated in mesoscale dipoles. J. Phys. Oceanogr. (in press).CrossRefGoogle Scholar
Viúdez, A. & Dritschel, D. G. 2003 Vertical velocity in mesoscale geophysical flows. J. Fluid Mech. 483, 199223.CrossRefGoogle Scholar
Viúdez, A. & Dritschel, D. G. 2004 Optimal potential vorticity balance of geophysical flows. J. Fluid Mech. 521, 343352.CrossRefGoogle Scholar
Viúdez, A., Tintoré, J. & Haney, R. L. 1996 About the nature of the generalized omega equation. J. Atmos. Sci. 53, 787795.2.0.CO;2>CrossRefGoogle Scholar
Williams, P. D., Haine, T. W. N. & Read, P. L. 2005 On the generation mechanisms of short-scale unbalanced modes in rotating two-layer flows with vertical shear. J. Fluid Mech. 528, 122.CrossRefGoogle Scholar
Williams, P. D., Read, P. L. & Haine, T. W. N. 2003 Spontaneous generation and impact of inertia–gravity waves in a stratified two-layer shear flow. Geophys. Res. Lett. 30, doi:10.1029/2003GL018498.CrossRefGoogle Scholar
Yavneh, I. & McWilliams, J. C. 1994 Breackdown of the slow manifold in the shallow-water equations. Geophys. Astrophys. Fluid Dyn. 75, 131161.CrossRefGoogle Scholar
Yuan, L. & Hamilton, K. 1994 Equilibrium dynamics in a forced-dissipative f-plane shallow-water system. J. Fluid Mech. 280, 369394.CrossRefGoogle Scholar
Zhang, F. 2004 Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. J. Atmos. Sci. 61, 440457.2.0.CO;2>CrossRefGoogle Scholar