Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T21:43:25.512Z Has data issue: false hasContentIssue false

The origin of oscillations of the large-scale circulation of turbulent Rayleigh–Bénard convection

Published online by Cambridge University Press:  01 October 2009

ERIC BROWN*
Affiliation:
The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
GUENTER AHLERS
Affiliation:
Department of Physics and iQCD, University of California, Santa Barbara, CA 93106, USA
*
Email address for correspondence: [email protected]

Abstract

In agreement with a recent experimental discovery by Xi et al. (Phys. Rev. Lett., vol. 102, 2009, paper no. 044503), we also find a sloshing mode in experiments on the large-scale circulation (LSC) of turbulent Rayleigh–Bénard convection in a cylindrical sample of aspect ratio one. The sloshing mode has the same frequency as the torsional oscillation discovered by Funfschilling & Ahlers (Phys. Rev. Lett., vol. 92, 2004, paper no. 1945022004). We show that both modes can be described by an extension of a model developed previously Brown & Ahlers (Phys. Fluids, vol. 20, 2008, pp. 105105-1–105105-15; Phys. Fluids, vol. 20, 2008, pp. 075101-1–075101-16). The extension consists of permitting a lateral displacement of the LSC circulation plane away from the vertical centreline of the sample as well as a variation of the displacement with height (such displacements had been excluded in the original model). Pressure gradients produced by the sidewall of the container on average centre the plane of the LSC so that it prefers to reach its longest diameter. If the LSC is displaced away from this diameter, the walls provide a restoring force. Turbulent fluctuations drive the LSC away from the central alignment, and combined with the restoring force they lead to oscillations. These oscillations are advected along with the LSC. This model yields the correct wavenumber and phase of the oscillations, as well as estimates of the frequency, amplitude and probability distributions of the displacements.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G., Brown, E. & Nikolaenko, A. 2006 The search for slow transients, and the effect of imperfect vertical alignment, in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 557, 347367.CrossRefGoogle Scholar
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2006 a Effect of the Earth's Coriolis force on turbulent Rayleigh–Bénard convection in the laboratory. Phys. Fluids 18, 125108-1–125108-15.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2006 b Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 568, 351386.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2007 a Large-scale circulation model of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98, 134501-1–134501-4.CrossRefGoogle ScholarPubMed
Brown, E. & Ahlers, G. 2007 b Temperature gradients and search for non-Boussinesq effects in the interior of turbulent Rayleigh–Bénard convection. Europhys. Lett. 80, 14001-1–14001-6.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2008 a Azimuthal asymmetries of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Fluids 20, 105105-1–105105-15.Google Scholar
Brown, E. & Ahlers, G. 2008 b A model of diffusion in a potential well for the dynamics of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Fluids 20, 075101-1–075101-16.Google Scholar
Brown, E., Funfschilling, D. & Ahlers, G. 2007 Anomalous Reynolds-number scaling in turbulent Rayleigh–Bénard convection. J. Stat. Mech. 2007, P10005-1–P10005-22.Google Scholar
Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95, 084503.CrossRefGoogle ScholarPubMed
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X. Z., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.CrossRefGoogle Scholar
Ciliberto, S., Cioni, S. & Laroche, C. 1996 Large-scale flow properties of turbulent thermal convection. Phys. Rev. E 54, R5901R5904.CrossRefGoogle ScholarPubMed
Cioni, S., Ciliberto, S. & Sommeria, J. 1997 Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111140.CrossRefGoogle Scholar
Funfschilling, D. & Ahlers, G. 2004 Plume motion and large scale circulation in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 92, 194502.CrossRefGoogle Scholar
Funfschilling, D., Brown, E. & Ahlers, G. 2008 Torsional oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech 607, 119139.CrossRefGoogle Scholar
Gitterman, M. 2005 The Noisy Oscillator: The First Hundred Years, from Einstein Until Now. World Scientific.CrossRefGoogle Scholar
Heslot, F., Castaing, B. & Libchaber, A. 1987 Transition to turbulence in helium gas. Phys. Rev. A 36, 58705873.CrossRefGoogle ScholarPubMed
Niemela, J. J., Skrbek, L., Sreenivasan, K. R. & Donnelly, R. J. 2001 The wind in confined thermal turbulence. J. Fluid Mech. 449, 169178.CrossRefGoogle Scholar
Qiu, X. L., Shang, X. D., Tong, P. & Xia, K.-Q. 2004 Velocity oscillations in turbulent Rayleigh–Bénard convection. Phys. Fluids. 16, 412423.CrossRefGoogle Scholar
Qiu, X. L. & Tong, P. 2000 Large-scale coherent rotation and oscillation in turbulent thermal convection. Phys. Rev. E 61, R6075R6078.CrossRefGoogle ScholarPubMed
Qiu, X. L. & Tong, P. 2001 a Large scale velocity structures in turbulent thermal convection. Phys. Rev. E 64, 036304-1–036304-13.CrossRefGoogle ScholarPubMed
Qiu, X. L. & Tong, P. 2001 b Onset of coherent oscillations in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett 87, 094501-1–094501-4.CrossRefGoogle ScholarPubMed
Qiu, X. L. & Tong, P. 2002 Temperature oscillations in turbulent Rayleigh–Bénard convection. Phys. Rev. E 66, 026308-1–026308-12.CrossRefGoogle ScholarPubMed
Resagk du Puits, R., Thess, A., Dolzhansky, F.V., Grossmann, S., Fontenele Araujo, F. & Lohse, D. 2006 Oscillations of the large scale wind in turbulent thermal convection. Phys. Fluids 18, 095105-1–095105-15.Google Scholar
Sano, M., Wu, X. Z. & Libchaber, A. 1989 Turbulence in helium-gas free convection. Phys. Rev. A 40, 64216430.CrossRefGoogle ScholarPubMed
Sun, C., Xi, H. D. & Xia, K. Q. 2005 a Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5. Phys. Rev. Lett. 95, 074502.CrossRefGoogle Scholar
Sun, C. & Xia, K.-Q. 2005 Scaling of the Reynolds number in turbulent thermal convection. Phys. Rev. E 72, 067302-1–067302-4.CrossRefGoogle ScholarPubMed
Sun, C., Xia, K. Q. & Tong, P. 2005 b Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell. Phys. Rev. E 72, 026302-1–026302-13.CrossRefGoogle Scholar
Takeshita, T., Segawa, T., Glazier, J. A. & Sano, M. 1996 Thermal turbulence in mercury. Phys. Rev. Lett. 76, 14651468.CrossRefGoogle ScholarPubMed
Tsuji, Y., Mizuno, T., Mashiko, T. & Sano, M. 2005 Mean wind in convective turbulence of mercury. Phys. Rev. Lett. 94, 034501.CrossRefGoogle ScholarPubMed
Villermaux, E. 1995 Memory-induced low frequency oscillations in closed convection boxes. Phys. Rev. Lett. 75, 46184621.CrossRefGoogle ScholarPubMed
Xi, H. D., Zhou, Q. & Xia, K. Q. 2006 Azimuthal motion of the mean wind in turbulent thermal convestion. Phys. Rev. E 73, 056312-1–056312-13.CrossRefGoogle Scholar
Xi, H.-D., Zhou, S.-Q., Zhou, Q., Chan, T.-S. & Xia, K.-Q. 2009 Origin of the temperature oscillation in turbulent thermal convection. Phys. Rev. Lett. 102, 044503.CrossRefGoogle ScholarPubMed
Zhou, Q., Xi, H.-D., Zhou, S.-Q., Sun, C. & Xia, K.-Q. 2009 Oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection: the sloshing mode and its relationship with the torsional mode. J. Fluid Mech. 630, 367390.CrossRefGoogle Scholar