Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T08:38:27.977Z Has data issue: false hasContentIssue false

Orientation dynamics of small, triaxial–ellipsoidal particles in isotropic turbulence

Published online by Cambridge University Press:  27 November 2013

Laurent Chevillard*
Affiliation:
Laboratoire de Physique de l’École Normale Supérieure de Lyon, CNRS, Université de Lyon, 46 allée d’Italie F-69007 Lyon, France
Charles Meneveau
Affiliation:
Department of Mechanical Engineering and Center for Environmental and Applied Fluid Mechanics, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
*
Email address for correspondence: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The orientation dynamics of small anisotropic tracer particles in turbulent flows is studied using direct numerical simulation (DNS) and results are compared with Lagrangian stochastic models. Generalizing earlier analysis for axisymmetric ellipsoidal particles (Parsa et al., Phys. Rev. Lett., vol. 109, 2012, 134501), we measure the orientation statistics and rotation rates of general, triaxial–ellipsoidal tracer particles using Lagrangian tracking in DNS of isotropic turbulence. Triaxial ellipsoids that are very long in one direction, very thin in another and of intermediate size in the third direction exhibit reduced rotation rates that are similar to those of rods in the ellipsoid’s longest direction, while exhibiting increased rotation rates that are similar to those of axisymmetric discs in the thinnest direction. DNS results differ significantly from the case when the particle orientations are assumed to be statistically independent from the velocity gradient tensor. They are also different from predictions of a Gaussian process for the velocity gradient tensor, which does not provide realistic preferred vorticity–strain-rate tensor alignments. DNS results are also compared with a stochastic model for the velocity gradient tensor based on the recent fluid deformation approximation (RFDA). Unlike the Gaussian model, the stochastic model accurately predicts the reduction in rotation rate in the longest direction of triaxial ellipsoids since this direction aligns with the flow’s vorticity, with its rotation perpendicular to the vorticity being reduced. For disc-like particles, or in directions perpendicular to the longest direction in triaxial particles, the model predicts noticeably smaller rotation rates than those observed in DNS, a behaviour that can be understood based on the probability of vorticity orientation with the most contracting strain-rate eigendirection in the model.

Type
Papers
Copyright
©2013 Cambridge University Press 

References

Ashurst, W. T., Kerstein, R., Kerr, R. & Gibson, C. 1987 Alignment of vorticity and scalar gradient with the strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30, 23432353.CrossRefGoogle Scholar
Bernstein, O. & Shapiro, M. 1994 Direct determination of the orientation distribution function of cylindrical particles immersed in laminar and turbulent shear flows. J. Aerosol Sci. 25, 113136.CrossRefGoogle Scholar
Biferale, L., Chevillard, L., Meneveau, C. & Toschi, F. 2007 Multiscale model of gradient evolution in turbulent flows. Phys. Rev. Lett. 98, 214501.CrossRefGoogle ScholarPubMed
Bretherton, F. P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14, 284304.CrossRefGoogle Scholar
Brunk, B. K., Koch, D. L. & Lion, L. W. 1998 A model for alignment between microscopic rods and vorticity. J. Fluid Mech. 364, 81113.CrossRefGoogle Scholar
Cantwell, B. J. 1992 Exact solution of a restricted Euler equation for the velocity gradient tensor. Phys. Fluids A 4, 782793.CrossRefGoogle Scholar
Chertkov, M., Pumir, A. & Shraiman, B. I. 1999 Lagrangian tetrad dynamics and the phenomonology of turbulence. Phys. Fluids 11, 23942410.CrossRefGoogle Scholar
Chevillard, L., Meneveau, C., Biferale, L. & Toschi, F. 2008 Modelling the pressure Hessian and viscous Laplacian in turbulence: comparisons with direct numerical simulation and implications on velocity gradient dynamics. Phys. Fluids 20, 101504.CrossRefGoogle Scholar
Chevillard, L. & Meneveau, C. 2006 Lagrangian dynamics and statistical geometric structure of turbulence. Phys. Rev. Lett. 97, 174501.CrossRefGoogle ScholarPubMed
Chevillard, L. & Meneveau, C. 2007 Intermittency and universality in a Lagrangian model of velocity gradients in three-dimensional turbulence. C. R. Méc. 335, 187193.CrossRefGoogle Scholar
Chevillard, L. & Meneveau, C. 2011 Lagrangian time correlations of vorticity alignments in isotropic turbulence: observations and model predictions. Phys. Fluids 23, 101704.CrossRefGoogle Scholar
Cristini, V., Blawzdziewicz, J. B., Loewenberg, M. & Collins, L. R. 2003 Breakup in stochastic Stokes flows: sub-Kolmogorov drops in isotropic turbulence. J. Fluid Mech. 492, 231250.CrossRefGoogle Scholar
Gierszewski, P. J. & Chaffey, C. E. 1978 Rotation of an isolated triaxial ellipsoid suspended in slow viscous flow. Canad. J. Phys. 56, 611.CrossRefGoogle Scholar
Girimaji, S. S. & Pope, S. B. 1990a A diffusion model for velocity gradients in turbulence. Phys. Fluids A 2, 242256.CrossRefGoogle Scholar
Girimaji, S. S. & Pope, S. B. 1990b Material element deformation in isotropic turbulence. J. Fluid Mech. 220, 427458.CrossRefGoogle Scholar
Gonzalez, M. 2009 Kinematic properties of passive scalar gradient predicted by a stochastic Lagrangian model. Phys. Fluids 21, 055104.CrossRefGoogle Scholar
Gustavsson, K., Einarsson, J. & Mehlig, B. 2013 Tumbling of small axisymmetric particles in random and turbulent flows. Preprint arXiv: 1305.1822.CrossRefGoogle Scholar
Hater, T., Homann, H. & Grauer, R. 2011 Lagrangian model for the evolution of turbulent magnetic and passive scalar fields. Phys. Rev. E 83, 017302.CrossRefGoogle ScholarPubMed
Hinch, E. J. & Leal, L. G. 1979 Rotation of small non-axisymmetric particles in a simple shear flow. J. Fluid Mech. 92, 591.CrossRefGoogle Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.Google Scholar
Jeong, E. & Girimaji, S. S. 2003 Velocity-gradient dynamics in turbulence: effect of viscosity and forcing. Theor. Comput. Fluid Dyn. 16, 421432.CrossRefGoogle Scholar
Junk, M. & Illner, R. 2007 A new derivation of Jeffery’s equation. J. Math. Fluid Mech. 9, 455488.CrossRefGoogle Scholar
Koch, D. L. & Subramanian, G. R. 2011 Collective hydrodynamics of swimming microorganisms: living fluids. Annu. Rev. Fluid Mech. 434, 637659.CrossRefGoogle Scholar
Larson, R. G. 1999 The Structure and Rheology of Complex Fluid. Oxford University Press.Google Scholar
Li, Y 2011 Small-scale intermittency and local anisotropy in turbulent mixing with rotation. J. Turbul. 12, N38.CrossRefGoogle Scholar
Lundell, F., Soderberg, D. L. & Alfredsson, H. P. 2011 Fluid mechanics of papermaking. Annu. Rev. Fluid Mech. 43, 195.CrossRefGoogle Scholar
Maffettone, P. L. & Minale, M. 1998 Equation of change for ellipsoidal drops in viscous flow. J. Non-Newtonian Fluid Mech. 78, 227241.CrossRefGoogle Scholar
Martins-Afonso, M. & Meneveau, C. 2010 Recent fluid deformation closure for velocity gradient tensor dynamics in turbulence: timescale effects and expansions. Physica D 239, 12411250.CrossRefGoogle Scholar
Meneveau, C. 2011 Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu. Rev. Fluid Mech. 43, 219245.CrossRefGoogle Scholar
Mortensen, P. H., Anderson, H. I., Gillissen, J. J. J. & Boersma, B. J. 2008 Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20, 093302.CrossRefGoogle Scholar
Mosler, A. B. & Shaqfeh, E. S. G. 1997 Drop breakup in the flow through fixed beds via stochastic simulation in model Gaussian fields. Phys. Fluids 9, 3209.CrossRefGoogle Scholar
Naso, A., Pumir, A. & Chertkov, M. 2007 Statistical geometry in homogeneous and isotropic turbulence. J. Turbul. 8, N. 39.CrossRefGoogle Scholar
Newsom, R. K. & Bruce, C. W. 1998 Orientational properties of fibrous aerosols in atmospheric turbulence. J. Aerosol Sci. 29, 773797.CrossRefGoogle Scholar
Parsa, S., Calzavarini, E., Toschi, F. & Voth, G. A. 2012 Rotation rate of rods in turbulent fluid flow. Phys. Rev. Lett. 109, 134501.CrossRefGoogle ScholarPubMed
Pedley, T. J. & Kessler, J. O. 1992 Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 313358.CrossRefGoogle Scholar
Pinsky, M. B. & Khain, A. P. 1998 Some effects of cloud turbulence on water–ice and ice–ice collisions. Atmos. Res. 47–48, 6986.CrossRefGoogle Scholar
Pumir, A. & Wilkinson, M. 2011 Orientation statistics of small particles in turbulence. New J. Phys. 13, 0930306.CrossRefGoogle Scholar
Saintillan, D. & Shelley, M. J. 2007 Orientational order and instabilities in suspensions of self-locomoting rods. Phys. Rev. Lett. 99, 058102.CrossRefGoogle ScholarPubMed
Shin, M. & Koch, D. L. 2005 Rotational and translational dispersion of fibres in isotropic turbulent flows. J. Fluid Mech. 540, 143173.CrossRefGoogle Scholar
Stone, H. A. 1994 Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech. 26, 65102.CrossRefGoogle Scholar
Vincenzi, D. 2013 Orientation of non-spherical particles in an axisymmetric random flow. J. Fluid Mech. 719, 465487.CrossRefGoogle Scholar
Wilkinson, M. & Kennard, H. R. 2012 A model for alignment between microscopic rods and vorticity. J. Phys. A: Math. Theor. 45, 455502.CrossRefGoogle Scholar
Yarin, A. L., Gottlieb, O. & Roisman, I. V 1997 Chaotic rotation of triaxial ellipsoids in simple shear flow. J. Fluid Mech. 340, 83100.CrossRefGoogle Scholar
Zhang, H., Ahmadi, G., Fan, F. G. & Mclaughlin, J. B. 2001 Ellipsoidal particles transport and deposition in turbulent channel flows. Intl. J. Multiphase Flow 27, 9711009.CrossRefGoogle Scholar
Zimmermann, R., Gasteuil, Y., Bourgoin, M., Volk, R., Pumir, A. & Pinton, J.-F. 2011 Rotational intermittency and turbulence induced lift experienced by large particles in a turbulent flow. Phys. Rev. Lett. 106, 154501.CrossRefGoogle Scholar