Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T21:58:42.323Z Has data issue: false hasContentIssue false

Organized structures in turbulent Taylor-Couette flow

Published online by Cambridge University Press:  20 April 2006

A. Barcilon
Affiliation:
Department of Meteorology and Geophysical Fluid Dynamics Institute, Florida State University, Tallahassee, Florida 32306
J. Brindley
Affiliation:
Department of Applied Mathematical Studies, University of Leeds, Leeds LS2 9JT

Abstract

A simple mathematical model is constructed to describe the regime of flow, extending over a wide range of values of Taylor number, in which turbulent Taylor–Couette flow in the annular region between two coaxial circular cylinders is characterized by the coexistence of steady coherent motion on two widely separated scales. These scales of motion, corresponding to the gap width of the annular region and to a boundary-layer thickness, are each identified as the consequence of a centrifugal instability, and are described as Taylor vortices and Görtler vortices respectively.

The assumption that both scales of motion are near marginal stability gives a closure to a pair of coupled eigenvalue problems, and the results of a linear analysis are shown to be in good agreement with many features of experimental observations.

Type
Research Article
Copyright
© 1984 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barcilon, A., Brindley, J., Lessen, M. & Mobbs, F. R. 1979 J. Fluid Mech. 94, 453463.
Batchelor, G. K. 1960 A theoretical model of the flow at speeds far above the critical. Appendix to R. J. Donnelly & H. J. Simon. J. Fluid Mech. 7, 401.Google Scholar
Beljaars, A. C. M., Prasad, K. K. & de Vries, D. A. 1981 J. Fluid Mech. 112, 3370.
Bippes, H. 1972 In Sitzungsberichte der Heidelberger Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Klasse, Jahrgang 1972.
Blackwelder, R. F. & Eckelmann, H. 1979 J. Fluid Mech. 94, 577594.
Bouabdallah, A. & Cognet, G. 1980 In Laminar—Turbulent Transition (ed. R. Eppler & H. Fasel), p. 368. Springer.
Brindley, J., Mobbs, F. R. & Quigley, D. J. 1981 Paper presented at Taylor Vortex Working Party, Tufts University.
Busse, F. H. 1978 Adv. Appl. Mech. 18, 77123.
Busse, F. H. 1981 In Hydrodynamic Instabilities and the Transition to Turbulence (ed. H. L. Swinney & J. P. Gollub), pp. 97137. Springer.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Di Prima, R. C. & Swinney, H. L. 1981 In Hydrodynamic Instabilities and the Transition to Turbulence (ed. H. L. Swinney & J. P. Gollub), pp. 139180. Springer.
Floryan, J. M. & Saric, W. S. 1982 AIAA J. 20, 316323.
Görtler, H. 1940 Nachr. Ges. Wiss. Gött. Math. Phys. Kl. 1, 126 [translated as NACA Tech. Memo. 1375].
Hall, P. 1982 J. Fluid Mech. 124, 475494.
Hall, P. 1983 J. Fluid Mech. 130, 4158.
Hammerlin, G. 1956 Z. angew. Math. Phys. 7, 156164.
Howard, L. N. 1963 J. Fluid Mech. 17, 405432.
Koschmieder, E. L. 1979 J. Fluid Mech. 93, 515527.
Lumley, J. L. 1981 In Transition and Turbulence (ed. R. E. Meyer). Academic.
Malkus, W. V. R. 1979 J. Fluid Mech. 90, 401414.
Meksyn, D. 1950 Proc. R. Soc. Lond. A 203, 253265.
Meksyn, D. 1961 New Methods in Laminar Boundary Layer Theory. Pergamon.
Short, M. G. & Jackson, J. H. 1977 In Superlaminar Flow in Bearings. Proc. 2nd Leeds—Lyon Symp. Tribol. (ed. D. Dowson, M. Godet & C. M. Taylor), pp. 2833. Lond. Inst. Mech. Engng.
Smith, A. M. O. 1955 Q. Appl. Maths 13, 233262.
Smith, G. P. & Townsend, A. A. 1982 J. Fluid Mech. 123, 187218.
Taylor, G. I. 1923 Phil. Trans. R. Soc. Lond. A 223, 289343.
Taylor, G. I. 1935 Proc. R. Soc. Lond. A 151, 494512.
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.
Wattendorf, F. L. 1935 Proc. R. Soc. Lond. A 148, 565598.