Published online by Cambridge University Press: 25 February 2000
The linear stability of convection in a rapidly rotating sphere studied here builds on well established relationships between local and global theories appropriate to the small Ekman number limit. Soward (1977) showed that a disturbance marginal on local theory necessarily decays with time due to the process of phase mixing (where the spatial gradient of the frequency is non-zero). By implication, the local critical Rayleigh number is smaller than the true global value by an O(1) amount. The complementary view that the local marginal mode cannot be embedded in a consistent spatial WKBJ solution was expressed by Yano (1992). He explained that the criterion for the onset of global instability is found by extending the solution onto the complex s-plane, where s is the distance from the rotation axis, and locating the double turning point at which phase mixing occurs. He implemented the global criterion on a related two-parameter family of models, which includes the spherical convection problem for particular O(1) values of his parameters. Since he used one of them as the basis of a small-parameter expansion, his results are necessarily approximate for our problem.
Here the asymptotic theory for the sphere is developed along lines parallel to Yano and hinges on the construction of a dispersion relation. Whereas Yano's relation is algebraic as a consequence of his approximations, ours is given by the solution of a second-order ODE, in which the axial coordinate z is the independent variable. Our main goal is the determination of the leading-order value of the critical Rayleigh number together with its first-order correction for various values of the Prandtl number.
Numerical solutions of the relevant PDEs have also been found, for values of the Ekman number down to 10−6; these are in good agreement with the asymptotic theory. The results are also compared with those of Yano, which are surprisingly good in view of their approximate nature.