Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T22:01:40.199Z Has data issue: false hasContentIssue false

Onset of surface-tension-driven Bénard convection

Published online by Cambridge University Press:  21 April 2006

E. L. Koschmieder
Affiliation:
College of Engineering and I. Prigogine Center for Statistical Mechanics, The University of Texas, Austin, TX 78712, USA
M. I. Biggerstaff
Affiliation:
College of Engineering and I. Prigogine Center for Statistical Mechanics, The University of Texas, Austin, TX 78712, USA

Abstract

An experimental investigation of the onset of convection in shallow fluid layers heated uniformly from below and cooled from above by an air layer has been made. If the depth of the silicone layer is smaller than 2 mm the onset of convection takes place in two stages. There is first a weak pattern, which is characterized by its appearance at ever smaller temperature gradients as the depth of the fluid is decreased. When the temperature difference across the fluid is increased a second strong pattern forms near the predicted critical Marangoni number. The cells in this pattern are hexagonal and seem to be what one has always referred to as Bénard cells. The temperature gradient at which this pattern appears increases with decreased depth. The heat transfer through the fluid has been measured. The critical temperature gradient for the formation of the hexagonal pattern has been determined from the break of the heat transfer curve.

Type
Research Article
Copyright
© 1986 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bénard, H. 1900 Rev. Gen. Sci. Pure Appl. 1, 1261–1271, 1309–1328.
Bénard, H. 1930 Proc. 3rd. Int. Congr. Appl. Mech. 1, 120.
Block, M. J. 1956 Nature 178, 650651.
Castillo, J. L. & Velarde, M. G. 1982 J. Fluid Mech. 125, 463474.
Cloot, A. & Lebon, G. 1984 J. Fluid Mech. 145, 447469.
Davis, S. H. 1969 J. Fluid Mech. 39, 347359.
Davis, S. H. & Homsy, G. M. 1980 J. Fluid Mech. 98, 527553.
Koschmieder, E. L. 1967 J. Fluid Mech. 30, 915.
Koschmieder, E. L. 1974 Adv. Chem. Phys. 26, 177212.
Koschmieder, E. L. & Pallas, S. G. 1974a Intl J. Heat Mass Transfer 17, 9911002.
Koschmieder, E. L. & Pallas, S. G. 1974b Rev. Sci. Instrum. 45, 11641165.
Kraska, J. R. & Sani, R. L. 1979 Intl J. Heat Mass Transfer 22, 535546.
Nield, D. A. 1964 J. Fluid Mech. 19, 341352.
Palmer, H. J. & Berg, J. C. 1971 J. Fluid Mech. 97, 779787.
Pearson, J. R. 1958 J. Fluid Mech. 4, 489500.
Rayleigh, Lord 1916 Phil. Mag. 32, 529546.
Rosenblat, S., Davis, S. H. & Homsy, G. M. 1982a J. Fluid Mech. 120, 91122.
Rosenblat, S., Homsy, G. M. & Davis, S. H. 1982b J. Fluid Mech. 120, 123138.
Scanlon, J. W. & Segel, L. A. 1967 J. Fluid Mech. 30, 149162.
Schechter, R. S., Velarde, M. G. & Platten, J. K. 1974 Adv. Chem. Phys. 26, 265301.
Schmidt, R. J. & Milverton, S. W. 1935 Proc. R. Soc. A 152, 586594.
Scriven, L. E. & Sternling, C. V. 1964 J. Fluid Mech. 19, 321340.
Silveston, P. L. 1958 Forsch. Ing. Wes. 24, 29–32, 59–69.
Smith, K. A. 1966 J. Fluid Mech. 24, 401–4l4.