Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T08:23:40.176Z Has data issue: false hasContentIssue false

One-dimensional capillary jumps

Published online by Cambridge University Press:  15 January 2015

M. Argentina*
Affiliation:
Université Nice Sophia Antipolis, CNRS, INLN, UMR 7335, 06560 Valbonne, France Institut Universitaire de France, 75005 Paris, France
A. Cohen
Affiliation:
Université Nice Sophia Antipolis, CNRS, LPMC, UMR 7336, 06100 Nice, France
Y. Bouret
Affiliation:
Université Nice Sophia Antipolis, CNRS, LPMC, UMR 7336, 06100 Nice, France
N. Fraysse
Affiliation:
Université Nice Sophia Antipolis, CNRS, LPMC, UMR 7336, 06100 Nice, France
C. Raufaste
Affiliation:
Université Nice Sophia Antipolis, CNRS, LPMC, UMR 7336, 06100 Nice, France
*
Email address for correspondence: [email protected]

Abstract

In flows where the ratio of inertia to gravity varies strongly, large variations in the fluid thickness appear and hydraulic jumps arise, as depicted by Rayleigh. We report a new family of hydraulic jumps, where the capillary effects dominate the gravitational acceleration. The Bond number – which measures the importance of gravitational body forces compared to surface tension – must be small in order to observe such objects using capillarity as a driving force. For water, the typical length should be smaller than 3 mm. Nevertheless, for such small scales, solid boundaries induce viscous stresses, which dominate inertia, and capillary jumps should not be described by the inertial shock wave theory that one would deduce from Bélanger or Rayleigh for hydraulic jumps. In order to get rid of viscous shears, we consider Plateau borders, which are the microchannels defined by the merging of three films inside liquid foams, and we show that capillary jumps propagate along these deformable conduits. We derive a simple model that predicts the velocity, geometry and shape of such fronts. A strong analogy with Rayleigh’s description is pointed out. In addition, we carried out experiments on a single Plateau border generated with soap films to observe and characterize these capillary jumps. Our theoretical predictions agree remarkably well with the experimental measurements.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bélanger, J. B.1841 Notes sur l’hydraulique, Ecole Royale des Ponts et Chaussées, Paris, France, session 1842, p. 223.Google Scholar
Bidone, G. 1819 Le remou et sur la propagation des ondes. Rep. R. Sci. Acad. Turin 12, 21112.Google Scholar
Bogy, D. B. 1979 Drop formation in a circular liquid jet. Annu. Rev. Fluid Mech. 11, 207228.Google Scholar
Bohr, T., Putkaradze, V. & Watanabe, S. 1993 Shallow-water approach to the circular hydraulic jump. J. Fluid Mech. 254, 635648.CrossRefGoogle Scholar
Bohr, T., Putkaradze, V. & Watanabe, S. 1997 Averaging theory for the structure of hydraulic jumps and separation in laminar free-surface flow. Phys. Rev. Lett. 79, 10381041.Google Scholar
Bonn, D., Andersen, A. & Bohr, T. 2008 Hydraulic jumps in a channel. J. Fluid Mech. 618, 7187.Google Scholar
Bowles, R. I. & Smith, F. T. 1992 The standing hydraulic jump: theory, computations and comparisons with experiments. J. Fluid Mech. 242, 145168.Google Scholar
Bush, J. W. N. & Aristoff, J. M. 2003 The influence of surface tension on the circular hydraulic jump. J. Fluid Mech. 489, 229238.Google Scholar
Buzza, D. M. A., Lu, C. Y. D. & Cates, M. E. 1995 Drop formation in a circular liquid jet. J. Phys. II France 5, 3752.Google Scholar
Chanson, H. 2011 Tidal Bores, Aegir, Eagre, Mascaret, Pororoca. Theory and Observations. World Scientific.Google Scholar
Chow, V. T. 1959 Open Channel Hydraulics. McGraw-Hill.Google Scholar
Cohen, A., Fraysse, N., Rajchenbach, J., Argentina, M., Bouret, Y. & Raufaste, C. 2014 Inertial mass transport and capillary hydraulic jump in a liquid foam microchannel. Phys. Rev. Lett. 112, 218303.Google Scholar
Craik, A. D. D., Latham, R. C., Fawkes, M. J. & Gribbon, P. W. F. 1981 The circular hydraulic jump. J. Fluid Mech. 112, 347362.Google Scholar
Duchesne, A., Lebon, L. & Limat, L. 2014 Constant Froude number in a circular hydraulic jump and its implication on the jump radius selection. Europhys. Lett. 107 (5), 54002.Google Scholar
Géminard, J.-C., Zywocinski, A., Caillier, F. & Oswald, P. 2004 Observation of negative line tensions from Plateau border regions in dry foam films. Phil. Mag. Lett. 84, 199204.Google Scholar
Hansen, F. K. & Rødsrud, G. 1991 Surface tension by pendant drop: I. A fast standard instrument using computer image analysis. J. Colloid Interface Sci. 141, 19.Google Scholar
Higuera, F. J. 1994 The hydraulic jump in a viscous laminar flow. J. Fluid Mech. 274, 6992.Google Scholar
Jannes, G., Piquet, R., Maissa, P., Mathis, C. & Rousseaux, G. 2011 Experimental demonstration of the supersonic–subsonic bifurcation in the circular jump: a hydrodynamic white hole. Phys. Rev. E 83, 056312.Google Scholar
Kapitza, P. L. 1948 Wave flow of thin viscous fluid layers. Zh. Eksp. Teor. Fiz. 18, 328 (translation: 1965 Collected Works of P. L. Kapitza (ed. D. ter Haar). Pergamon).Google Scholar
Koehler, S. A., Hilgenfeldt, S. & Stone, H. 1999 Liquid flow through aqueous foams: the node-dominated foam drainage equation. Phys. Rev. Lett. 82, 42324235.CrossRefGoogle Scholar
Kurihara, M.1946 On hydraulic jumps. In Proceedings of the Report of the Research Institute for Fluid Engineering, Kyusyu Imperial University 3 (2), 11–33.Google Scholar
Landau, L. D. & Lifshitz, E. M. 1987 Fluid Mechanics. Pergamon.Google Scholar
Lighthill, J. 1978 Waves in Fluids. Cambridge University Press.Google Scholar
Passandideh-Fard, M., Teymourtash, A. R. & Khavari, M. 2011 Numerical study of circular hydraulic jump using volume-of-fluid method. J. Fluids Eng. 133, 011401.Google Scholar
Pitois, O., Fritz, C. & Vignes-Adler, M. 2005 Hydrodynamic resistance of a single foam channel. Colloids Surf. A 261, 109114.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 2007 Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press.Google Scholar
Raufaste, C., Foulon, A. & Dollet, B. 2009 Dissipation in quasi-two-dimensional flowing foams. Phys. Fluids 21, 053102.Google Scholar
Rayleigh, Lord 1914 On the theory of long waves and bores. Proc. R. Soc. Lond. A 5, 324328.Google Scholar
Rojas, N., Argentina, M., Cerda, E. & Tirapegui, E. 2010 Inertial lubrication theory. Phys. Rev. Lett. 104, 18780.Google Scholar
Rojas, N., Argentina, M. & Tirapegui, E. 2013 A progressive correction to the circular hydraulic jump scaling. Phys. Fluids 25, 042105.Google Scholar
Savart, F. 1833 Mémoire sur le choc d’une veine liquide lancée contre un plan circulaire. Ann. Chim. 54, 5687.Google Scholar
Simpson, J. E. 1997 Gravity Currents: In the Environment and the Laboratory, 2nd edn. Cambridge University Press.Google Scholar
Tani, I. 1949 Water jump in the boundary layer. J. Phys. Soc. Japan 4, 212215.Google Scholar
Watson, E. J. 1964 The radial spread of a liquid jet over a horizontal plane. J. Fluid Mech. 20, 481499.Google Scholar
Weaire, D., Pittet, N., Hutzler, S. & Pardal, D. 1993 Steady-state drainage of an aqueous foam. Phys. Rev. Lett. 71, 26702673.Google Scholar
Yokoi, K. & Xiao, F. 2002 Mechanism of structure formation in circular hydraulic jumps: numerical studies of strongly deformed free-surface shallow flows. Physica D 161, 202219.Google Scholar

Argentina et al. supplementary movie

Capillary hydraulic jump formation following the drop coalescence. The permanent regime is established on a distance comparable to the drop radius. The image real width is 8.2 mm. The movie is slowed down 100 times.

Download Argentina et al. supplementary movie(Video)
Video 193 KB

Argentina et al. supplementary movie

Capillary hydraulic jump formation following the drop coalescence. The permanent regime is established on a distance comparable to the drop radius. The image real width is 8.2 mm. The movie is slowed down 100 times.

Download Argentina et al. supplementary movie(Video)
Video 38.2 KB

Argentina et al. supplementary movie

Close-up focused on the capillary hydraulic jump in the permanent regime. The shape is stationary and the traveling velocity is constant. The image real width is 6.7 mm. The movie is slowed down 500 times.

Download Argentina et al. supplementary movie(Video)
Video 1.1 MB

Argentina et al. supplementary movie

Close-up focused on the capillary hydraulic jump in the permanent regime. The shape is stationary and the traveling velocity is constant. The image real width is 6.7 mm. The movie is slowed down 500 times.

Download Argentina et al. supplementary movie(Video)
Video 233.5 KB