Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T19:29:16.723Z Has data issue: false hasContentIssue false

On two-dimensional magnetohydrodynamic turbulence

Published online by Cambridge University Press:  19 April 2006

A. Pouquet
Affiliation:
Centre National de la Recherche Scientifique, Observatoire de Nice, France

Abstract

It is shown that two-dimensional MHD turbulence is in certain respects closer to three-dimensional than to two-dimensional hydrodynamic turbulence. A second-order closure indicates that:

  1. at zero viscosity and magnetic diffusivity, a singularity appears at a finite time;

  2. there is an energy cascade to small scales and an inverse cascade of squared magnetic potential, in agreement with a conjecture of Fyfe & Montgomery (1976);

  3. small-scale magnetic energy acts like a negative eddy viscosity on large-scale magnetic fields;a

  4. (iv) upon injection of magnetic energy, a stationary state is obtained which has zero magnetic energy for a positive magnetic diffusivity λ (anti-dynamo theorem); however, this stationary state is preceded by a very long non-zero magnetic energy plateau which probably extends to infinite times as λ → 0.

It is suggested that direct numerical simulation of the two-dimensional MHD equations with high resolution (a 5122 or 10242 grid) could lead to a better understanding of the small-scale structure of fully developed turbulence, especially questions of intermittency and geometry.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alemany, A., Moreau, R., Sulem, P. L. & Frisch, U. 1978 Influence of an external magnetic field on homogeneous MHD turbulence. J. Méc. (in press).Google Scholar
Batchelor, G. K. 1969 Phys. Fluids Suppl. 12, II 233.
Brissaud, A., Frisch, U., LÉORAT, J., Lesieur, M., Mazure, A., Pouquet, A., Sadourny, R. & Sulem, P. L. 1973 Ann. Géophys. 29, 539.
Desbois, M. 1975 J. Atmos. Sci. 32, 1838.
Fournier, J. D. & Frisch, U. 1978 Phys. Rev. A 17, 747.
Frisch, U. & Bardos, C. 1975 Global regularity of the two dimensional Euler equation for an ideal incompressible fluid. Unpublished manuscript, Observatoire de Nice.
Frisch, U., Lesieur, M. & Brissaud, A. 1974 J. Fluid Mech. 65, 145.
Frisch, U., Sulem, P. L. & Nelkin, M. 1978 J. Fluid Mech. 87, 719.
Fyfe, D. & Montgomery, D. 1976 J. Plasma Phys. 16, 181.
Fyfe, D., Montgomery, D. & Joyce, G. 1977 J. Plasma Phys. 17, 369.
Gibson, C. H., Stegen, G. R. & Mcconnell, S. 1970 Phys. Fluids 13, 2448.
Herring, J. R., Orszag, S. A., Kraichnan, R. H. & Fox, D. G. 1974 J. Fluid Mech. 66, 417.
Kolesnikov, Y. B. & Tsinober, A. B. 1972 Magnitaya Gidrodinamica 3, 23.
Kolmogorov, A. N. 1962 J. Fluid Mech. 12, 82.
Kraichnan, R. H. 1966 Phys. Fluids 9, 1728.
Kraichnan, R. H. 1974 J. Fluid Mech. 64, 737.
Kraichnan, R. H. 1975 J. Fluid Mech. 67, 15.
Kraichnan, R. H. 1976 J. Atmos. Sci. 33, 1521.
Krause, F. & RÜDIGER, G. 1974 Astron. Nachr. 295, 185.
Krause, F. & RÜDIGER, G. 1975 Solar Phys. 42, 107.
Kuo, A.-Y. & Corrsin, S. 1971 J. Fluid Mech. 50, 285.
Lee, T. D. 1952 Quart. Appl. Math. 10, 69.
Léorat, J. 1975 Thése d'Etat, Université Paris VII.
Lortz, D. 1968 Phys. Fluids 11, 913.
Mandelbrot, B. B. 1975 Les Objets Fractals: Forme, Hasard et Dimension. Paris: Flammarion. (English edition: Fractals: Form, Chance and Dimension. San Francisco: W. H. Freeman & Comp. Publ., 1977.)
Moffatt, H. K. 1967 J. Fluid Mech. 28, 571.
Moss, D. J. 1970 Mon. Not. Roy. Astr. Soc. 148, 173.
Nelkin, M. 1975 Phys. Rev. A11, 1737.
Orszag, S. A. 1977 Statistical Theories of Turbulence, 1973 Les Houches Summer School of Physics (ed. R. Balian & J. L. Peube), p. 235. Gordon & Breach.
Orszag, S. A. & Tang, C. M. 1978 Small-scale structure of two-dimensional magnetohydro-dynamic turbulence. Submitted to J. Fluid Mech.Google Scholar
Pouquet, A., Frisch, J. & LÉORAT, J. 1976 J. Fluid Mech. 77, 321.
Pouquet, A., Lesieur, M., André, J. C. & Basdevant, C. 1975 J. Fluid Mech. 72, 305.
Rose, H. & Sulem, P. L. 1978 J. Phys. 39, 441 (Paris).
Steeenbeck, M., Krause, F. & Raudler, K. H. 1966 Z. Naturforsch. 21 a, 369.
Stenflo, J. O. 1977 IAU Coll. no. 36 (ed. R. M. Bonnet & Ph. Delache), p. 143. Clermont-Ferrand: G. de Bussac.
Stenflo, J. O. & Lindegren, L. 1977 Astron. Astrophys. 59, 367.
Sulem, C. 1977 C.R. Acad. Sci. Paris A 285, 365.
Sulem, P. L. & Frisch, U. 1975 J. Fluid Mech. 72, 417.
Tappert, F. & Hardin, R. 1971 Film: Computer Simulated MHD Turbulence. Bell Labs.
Vainshtein, S. I. & Zeldovich, Y. B. 1972 Geomagn. Aeron. 13, 123.
Van Atta, C. W. & Park, J. 1972 In Statistical Models of Turbulence (ed. M. Rosenblatt & C. W. Van Atta), pp. 402426. Springer.
Weiss, N. O. 1966 Proc. Roy. Soc. A293, 310.
Wolibner, W. 1933 Math. Z. 37, 668.