Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T14:20:06.446Z Has data issue: false hasContentIssue false

On the wall structure of the turbulent boundary layer

Published online by Cambridge University Press:  11 April 2006

R. F. Blackwelder
Affiliation:
Department of Aerospace Engineering, University of Southern California, Los Angeles
R. E. Kaplan
Affiliation:
Department of Aerospace Engineering, University of Southern California, Los Angeles

Abstract

The wall structure of the turbulent boundary layer was examined using hot-wire rakes and conditional sampling techniques. Instantaneous velocity measurements indicate a high degree of coherence over a considerable area in the direction normal to the wall. At y+ = 15, there is some evidence of large-scale correlation in the spanwise direction, but almost no indication of the streamwise streaks that exist in the lower regions of the boundary layer. Conditional sampling showed that the normal velocity is directed outwards in regions of strong stream-wise-momentum deficit, and inwards when the streamwise velocity exceeds its mean value. The conditionally averaged Reynolds shear stress was approximately an order of magnitude greater than its conventionally averaged value and decayed slowly downstream.

Type
Research Article
Copyright
© 1976 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bakewell, P. & Lumley, J. L. 1967 Phys. Fluids, 10, 1880.
Blackwelder, R. F. & Kaplan, R. E. 1972 Intermittent structures in turbulent boundary layers. NATO—AGARD Conf. Proc. no. 93. London: Technical Editing & Reproduction Ltd.
Brodkey, R. S., Wallace, J. M. & Eckelmann, H. 1974 J. Fluid Mech. 63, 209.
Champagne, F. H., Harris, V. G. & Corrsin, S. C. 1970 J. Fluid Mech. 41, 81.
Chen, C. H. P. 1975 The large scale motion in a turbulent boundary layer: a study using temperature contamination. Ph.D. thesis, University of Southern California, Los Angeles.
Corino, E. R. & Brodkey, R. S. 1969 J. Fluid Mech. 37, 1.
Corrsin, S. 1957 Proc. 1st Naval Hydr. Symp., 373. SIS, Nat. Acad. Sci./Nat. Res. Counc.
Emmerling, R. 1973 Die Momentane Struktur des Wanddruckes einer turbulenten Grenzschichtstromung. Mitt. MPI Stromungsforsch u. Aerodyn. Versuchsanst., Göttingen, no. 56.
Grass, A. J. 1971 J. Fluid Mech. 50, 233.
Gupta, A. K., Laufer, J. & Kaplan, R. E. 1971 J. Fluid Mech. 50, 493.
Kaplan, R. E. 1973 Proc. Symp. Turbulence in Liquids. University of Missouri Press.
Kaplan, R. E. & Laufer, J. 1969 Proc. 12th Int. Cong. Appl. Mech., Stanford, 236. Springer.
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 J. Fluid Mech. 50, 133.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 J. Fluid Mech. 30, 741.
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. 1970 J. Fluid Mech. 41, 283.
Laufer, J. & Badri Narayanan, M. A. 1971 Phys. Fluids, 14, 182.
Lu, S. S. & Willmarth, W. W. 1973a Phys. Fluids, 16, 2012.
Lu, S. S. & Willmarth, W. W. 1973b J. Fluid Mech. 60, 481.
Lumley, J. L. 1970 Stochastics Tools in Turbulence. Academic.Google Scholar
Narahari Rao, K., Narasimha, R. & Badri Narayanan, M. A. 1971 J. Fluid Mech. 48, 339.
Offen, G. & Kline, S. J. 1973 Stanford University Mech. Engng Dept. Rep. MD-31.
Rice, S. O. 1944 Bell System Tech. J. 23, 282.
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 J. Fluid Mech. 54, 39.
Willmarth, W. W. & Lu, S. S. 1972 Structure of Reynolds stress near the wall. NATO—AGARD Conf. Proc. no. 93. London: Technical Editing & Reproduction Ltd.