Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T06:19:05.883Z Has data issue: false hasContentIssue false

On the threshold for wave breaking of two-dimensional deep water wave groups in the absence and presence of wind

Published online by Cambridge University Press:  15 December 2016

Arvin Saket*
Affiliation:
Water Research Laboratory, School of Civil and Environmental Engineering, UNSW Australia, 110 King St., Manly Vale, NSW 2093, Australia
William L. Peirson
Affiliation:
Water Research Laboratory, School of Civil and Environmental Engineering, UNSW Australia, 110 King St., Manly Vale, NSW 2093, Australia
Michael L. Banner
Affiliation:
School of Mathematics and Statistics, UNSW Australia, Sydney 2052, Australia
Xavier Barthelemy
Affiliation:
Water Research Laboratory, School of Civil and Environmental Engineering, UNSW Australia, 110 King St., Manly Vale, NSW 2093, Australia School of Mathematics and Statistics, UNSW Australia, Sydney 2052, Australia
Michael J. Allis
Affiliation:
Water Research Laboratory, School of Civil and Environmental Engineering, UNSW Australia, 110 King St., Manly Vale, NSW 2093, Australia National Institute of Water and Atmospheric Research, Hamilton 3251, New Zealand
*
Email address for correspondence: [email protected]

Abstract

The threshold for the onset of breaking proposed by Barthelemy et al. (arXiv:1508.06002v1, 2015) has been investigated in the laboratory for unidirectional wave groups in deep water and extended to include different classes of wave groups and moderate wind forcing. Thermal image velocimetry was used to compare measurements of the wave crest point (maximum elevation and also the point of maximum) surface water particle velocity ($U_{s}$) with the wave crest point speed ($C$) determined by an array of closely spaced wave gauges. The crest point surface energy flux ratio $B_{x}=U_{s}/C$ that distinguishes maximum recurrence from marginal breaking was found to be $0.840\pm 0.016$. Increasing wind forcing from zero to $U_{\unicode[STIX]{x1D706}/4}/C_{0}=1.42$ systematically increased this threshold by 2 %. Increasing the spectral bandwidth (decreasing the Benjamin–Feir index from 0.39 to 0.31) systematically reduced the threshold by 1.5 %.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banner, M. L., Barthelemy, X., Fedele, F., Allis, M., Benetazzo, A., Dias, F. & Peirson, W. L. 2014 Linking reduced breaking crest speeds to unsteady nonlinear water wave group behavior. Phys. Rev. Lett. 112, 114502.Google Scholar
Banner, M. L. & Peirson, W. L. 2007 Wave breaking onset and strength for two-dimensional deep-water wave groups. J. Fluid Mech. 585, 93115.Google Scholar
Banner, M. L. & Peregrine, D. H. 1993 Wave breaking in deep water. Annu. Rev. Fluid Mech. 25, 373397.Google Scholar
Banner, M. L. & Phillips, O. M. 1974 On the incipient breaking of small scale waves. J. Fluid Mech. 65, 647656.Google Scholar
Barthelemy, X., Banner, M. L., Peirson, W. L., Fedele, F., Allis, M. & Dias, F.2015 On the local properties of highly nonlinear unsteady gravity water waves. Part 2. Dynamics and onset of breaking. arXiv:1508.06002v1.Google Scholar
Benjamin, T. B. & Feir, J. E. 1967 The disintegration of wave trains in deep water. Part 1. Theory. J. Fluid Mech. 27, 417430.Google Scholar
Derakhti, M. & Kirby, J. T. 2016 Breaking-onset, energy and momentum flux in unsteady focused wave packets. J. Fluid Mech. 790, 553581.Google Scholar
Duncan, J. H., Qiao, H., Philomin, V. & Wenz, A. 1999 Gentle spilling breakers: crest profile evolution. J. Fluid Mech. 379, 191222.CrossRefGoogle Scholar
Holthuijsen, L. H.2007 Waves in oceanic and coastal waters. CUP. ISBN 978-0-521-86028-4.Google Scholar
Hsu, C. T. & Hsu, Y. 1983 On the structure of the turbulent flow over a progressive water wave: theory and experiment in a transformed, wave-following coordinate system. Part 2. J. Fluid Mech. 131, 123153.Google Scholar
Janssen, P. A. E. M. 2003 Nonlinear four-wave interaction and freak waves. J. Phys. Oceanogr. 33 (4), 863884.2.0.CO;2>CrossRefGoogle Scholar
Kjeldsen, S. P. & Myrhaug, D. 1979 Breaking waves in deep water and resulting wave forces. In Proc. Annu. Offshore Technol. Conf., pp. 25152522. Am. Inst. Min. Metall. Petrol. Eng.Google Scholar
Longuet-Higgins, M. S. 1963 The generation of capillary waves by steep gravity waves. J. Fluid Mech. 16, 138159.Google Scholar
Longuet-Higgins, M. S. 1974 Breaking waves in deep or shallow water. In Proc. 10th Conf. on Naval Hydrodynamics, pp. 597605. MIT.Google Scholar
Mastenbroek, C.1996 Wind wave interaction. PhD thesis, Delft Technical University.Google Scholar
Melville, W. K. 1996 The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech. 28, 279321.Google Scholar
Melville, W. K. & Rapp, R. J. 1988 The surface velocity field in steep and breaking waves. J. Fluid Mech. 189, 122.CrossRefGoogle Scholar
Oh, S. H., Mizutani, N., Suh, K. D. & Hashimoto, N. 2005 Experimental investigation of breaking criteria of deepwater wind waves under strong wind action. Appl. Ocean Res. 27, 235250.CrossRefGoogle Scholar
Peirson, W. L., Walker, J. W. & Banner, M. L. 2014 On the microphysical behaviour of wind-forced water surfaces and consequent re-aeration. J. Fluid Mech. 743, 399447.Google Scholar
Perlin, M., Choi, W. & Tian, Z. 2013 Breaking waves in deep and intermediate waters. Annu. Rev. Fluid Mech. 45, 115145.Google Scholar
Perlin, M., He, J. & Bernal, L. P. 1996 An experimental study of deep water plunging breakers. Phys. Fluids 8, 23652374.CrossRefGoogle Scholar
Perlin, M. & Schultz, W. W. 2000 Capillary effects on surface waves. Annu. Rev. Fluid Mech. 32, 241274.CrossRefGoogle Scholar
Phillips, O. M. 1977 The Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Qiao, H. & Duncan, J. H. 2001 Gentle spilling breakers: crest flow-field evolution. J. Fluid Mech. 439, 5785.Google Scholar
Rapp, R. J. & Melville, W. K. 1990 Laboratory measurements of deep water breaking waves. Phil. Trans. R. Soc. Lond. A 331, 735800.Google Scholar
Song, J. B. & Banner, M. L. 2002 On determining the onset and strength of breaking for deep water waves. Part I. Unforced irrotational wave groups. J. Phys. Oceanogr. 32, 25412558.Google Scholar
Stansell, P. & MacFarlane, C. 2002 Experimental investigation of wave breaking criteria based on wave phase speeds. J. Phys. Oceanogr. 32, 12691283.Google Scholar
Stokes, G. G. 1880 Appendices and supplement to a paper on the theory of oscillatory waves. Math. Phys. Pap. 1, 219229.Google Scholar
Tian, Z., Perlin, M. & Choi, W. 2008 Evaluation of a deep-water wave breaking criterion. Phys. Fluids 20, 066604.CrossRefGoogle Scholar
Veron, F. & Melville, W. K. 2001 Experiments on the stability and transition of wind driven water surfaces. J. Fluid Mech. 446, 2565.CrossRefGoogle Scholar
Veron, F., Melville, W. K. & Lenain, L. 2008 Infrared techniques for measuring ocean surface processes. J. Atmos. Ocean. Technol. 25 (2), 307326.CrossRefGoogle Scholar