Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T06:53:39.626Z Has data issue: false hasContentIssue false

On the structure of turbulent channel flow

Published online by Cambridge University Press:  20 April 2006

Arne V. Johansson
Affiliation:
Department of Mechanics, The Royal Institute of Technology, S-100 44 Stockholm, Sweden
P. Henrik Alfredsson
Affiliation:
Department of Mechanics, The Royal Institute of Technology, S-100 44 Stockholm, Sweden

Abstract

Hot-film measurements of the streamwise velocity component were carried out in a fully developed turbulent water-channel flow for three different Reynolds numbers (13800, 34600 and 48900). The results for the first four statistical moments complement and extend the results from previous studies of turbulent channel flow. The VITA variance technique waa employed to detect deterministic events in the streamwise velocity. It waa demonstrated that the VITA technique has a band-pass-filter character. The number of events detected was found to decrerrae exponentially with the threshold level and the events occupy a wide range of timescales. This makes it impossible to define one unique frequency of occurrence or one unique duration of the events. However, by using this technique information was obtained on the amplitude and timescale distributions of the events. The chmacteristic features of the conditional iverages were found to be related to the skewness and flatness factors.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A. 1981 Ann. Rev. Fluid Mech. 13, 131.
Blackwelder, R. F. & Kaplan, R. E. 1976 J. Fluid Mech. 76, 89.
Bullock, K. J., Cooper, R. E. & Abernathy, F. H. 1978 J. Fluid Mech. 88, 585.
Clark, J. A. 1968 Trans. A.S.M.E. D, J. Basic Engng 90, 455.
Comte-Bellot, G. 1965 Publications Scientifiques et Techniques du Ministère de l'Air no. 419.
Comte-Bellot, G., Sabot, J. & Saleh, I. 1979 In Proc. Dynamic Flow Conf. – Dynamic Measurements in Unsteady Flows, 1978, Marseille, Baltimore, p. 213.
Eckelmann, H. 1974 J. Fluid Mech. 65, 439.
Eckelmann, H. & Wallace, J. M. 1981 In The Role of Coherent Structures in Modelling Turbulence and Mixing (ed. J. Jimenez). Lecture Notes in Physics, vol. 136, p. 292, Springer.
Fahlgren, E. M., Johansson, A. V. & Alfredsson, P. H. 1981 R. Inst. Tech., Stockholm, Rep. TRITA-MEX-81–01 (ISSN 0348–467 X).
Johansson, A. V. & Alfredsson, P. H. 1981 R. Inst. Tech., Stockholm, Rep. TRITA-MEK-81–04 (ISSN 0348–467 X).
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 J. Fluid Mech. 50, 133.
Kreplin, H.-P. 1976 Mitteilung aus dem MPI für Strömungsforschung und der A V A Göttingen no. 63.
Landahl, M. T. 1980 In Proc. ICHMT/IUTAM Symp. on Heat and Mass Transfer and Structure of Turbulence, Dubrovnik, Yugoslavia.
Laufer, J. 1951 NACA Rep. no. 1053.
Laufer, J. & Badri Narayanan, M. A. 1971 Phys. Fluids 14, 182.
Offen, G. R. & Kline, S. J. 1975 In Proc. 3rd Symp. on Turbulence in Liquids, 1973, Univ. Missouri–Rolla (ed. G. K. Patterson & J. L. Zakin), p. 289.
Perry, A. E. & Abell, C. J. 1975 J. Fluid Mech. 67, 257.
Rao, K. N., Narasimha, R. & Badri Narayanan, M. A. 1971 J. Fluid Mech. 48, 339.
Sabot, J. & Comte-Bellot, G. 1976 J. Fluid Mech. 74, 767.
Wallace, J. M., Brodkey, R. S. & Eckelmann, H. 1977 J. Fluid Mech. 83, 673.
Willmarth, W. W. 1975 Adv. Appl. Mech. 15, 159.
Willmarth, W. W. & Lu, S. S. 1972 J. Fluid Mech. 55, 65.
Zarič, Z. 1972 Adv. Heat Transfer 8, 285.
Zarič, Z. 1975 Int. J. Heat Mass Transfer 18, 831.