Article contents
On the stability of the μ(I) rheology for granular flow
Published online by Cambridge University Press: 03 November 2017
Abstract
This article deals with the Hadamard instability of the so-called $\unicode[STIX]{x1D707}(I)$ model of dense rapidly sheared granular flow, as reported recently by Barker et al. (J. Fluid Mech., vol. 779, 2015, pp. 794–818). The present paper presents a more comprehensive study of the linear stability of planar simple shearing and pure shearing flows, with account taken of convective Kelvin wavevector stretching by the base flow. We provide a closed-form solution for the linear-stability problem and show that wavevector stretching leads to asymptotic stabilization of the non-convective instability found by Barker et al. (J. Fluid Mech., vol. 779, 2015, pp. 794–818). We also explore the stabilizing effects of higher velocity gradients achieved by an enhanced-continuum model based on a dissipative analogue of the van der Waals–Cahn–Hilliard equation of equilibrium thermodynamics. This model involves a dissipative hyperstress, as the analogue of a special Korteweg stress, with surface viscosity representing the counterpart of elastic surface tension. Based on the enhanced-continuum model, we also present a model of steady shear bands and their nonlinear stability against parallel shearing. Finally, we propose a theoretical connection between the non-convective instability of Barker et al. (J. Fluid Mech., vol. 779, 2015, pp. 794–818) and the loss of generalized ellipticity in the quasi-static field equations. Apart from the theoretical interest, the present work may suggest stratagems for the numerical simulation of continuum field equations involving the $\unicode[STIX]{x1D707}(I)$ rheology and variants thereof.
JFM classification
- Type
- Papers
- Information
- Copyright
- © 2017 Cambridge University Press
References
- 21
- Cited by