Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T21:44:54.955Z Has data issue: false hasContentIssue false

On the stability of compressible flow past axisymmetric bodies

Published online by Cambridge University Press:  26 April 2006

M. R. Malik
Affiliation:
High Technology Corporation, P.O. Box 7262, Hampton, VA 23666, USA
R. E. Spall
Affiliation:
High Technology Corporation, P.O. Box 7262, Hampton, VA 23666, USA

Abstract

Compressible linear stability theory for axisymmetric flows is presented. The theory is applied to flow past a cylinder and a sharp cone at a Mach number of 5 with adiabatic wall conditions. The effect of transverse curvature and body divergence is studied. It is found that transverse curvature has a stabilizing influence on axisymmetric (first and second mode) disturbances while it has a destabilizing influence on the asymmetric (oblique first mode) disturbances. The body divergence effects are stabilizing for both symmetric and asymmetric disturbances. Comparisons made with the results of planar stability theory show that, for a cylinder, curvature effects become more pronounced with increasing distance along the cylinder. For a sharp cone, these effects become less significant further away from the cone tip since the body radius increases faster than the growth of the boundary layer. The effect of cone angle on stability is also studied.

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beckwith, I. E., Creel, T. R., Chen, F.-J. & Kendall, J. M. 1983 NASA TP-2180.
Bodonyi, R. J. & Smith, F. T. 1981 Proc. R. Soc. Lond. A 375, 65
Chang, C.-L., Malik, M. R. & Hussaini, M. Y. 1990 AIAA Paper 90–1448.
Chen, F.-J., Malik, M. R. & Beckwith, I. E. 1989 AIAA J. 27, 687.
Cowley, S. & Hall, P. 1990 J. Fluid Mech. 214, 17.
Demetriades, A. 1974 AIAA Paper 74–535.
Duck, P. W. 1990 J. Fluid Mech. 214, 611.
Duck, P. W. & Hall, P. 1989 Q.J. Mech. Appl. Maths 42, 115.
El-Hady, N. M. 1981 NASA CR-3474.
Gapanov, S. A. 1981 Proc. Eighth Canadian Cong. of Appl. Mech., pp. 673.
Gasperas, G. 1987 AIAA Paper 87–0494.
Gaster, M. 1974 J. Fluid Mech. 66, 465.
Harris, J. E. & Blanchard, D. K. 1982 NASA TM-83207.
Hayes, W. D. & Probstein, R. F. 1959 Hypersonic Flow Theory. Academic.
Kendall, J. M. 1967 Aerospace Corp. Rep. BSD-TR-67–213, vol. II.
Kendall, J. M. 1975 AIAA J. 13, 290.
Lees, L. & Lin, C. C. 1946 NACA TN 1115.
Lees, L. & Reshotko, E. 1962 J. Fluid Mech. 12, 555.
Mack, L. M. 1969 Jet Propulsion Lab Rep. 900–277.
Mack, L. M. 1984 AGARD Rep. 709.
Mack, L. M. 1987 AIAA Paper 87–1413.
Malik, M. R. 1984 Energy Resources Tech. Conf. ASME, FED-Vol. 11, p. 139.
Malik, M. R. 1989a AIAA J. 27, 1487.
Malik, M. R. 1989b In Laminar–Turbulent Transition, pp. 251. Springer.
Malik, M. R. 1990 J. Comput. Phys. 86, 376.
Malik, M. R., Chuang, S. & Hussaini, M. Y. 1982 Z. Angew. Math. Phys. 33, 189.
Malik, M. R. & Poll, D. I. A. 1985 AIAA J. 23, 1362.
Malik, M. R., Spall, R. E. & Chang, C.-L. 1990 AIAA Paper 90–0112.
Malik, M. R., Wilkinson, S. P. & Orszag, S. A. 1981 AIAA J. 19, 1131.
Morkovin, M. V. 1969 AFFDL-TR-68–149.
Pate, S. R. 1971 AIAA J. 9, 1082.
Pate, S. R. & Scheuler, C. J. 1969 AIAA J. 7, 450.
Petrov, G. V. 1985 In Laminar-Turbulent Transition, pp. 487. Springer.
Probstein, R. F. & Elliott, D. 1956 J. Aeronaut. Sci. 23, 208.
Reshotko, E. & Khan, M. M. S. 1979 In Laminar-Turbulent Transition, pp. 186. Springer.
Smith, F. T. 1989 J. Fluid Mech. 198, 127.
Stetson, K. F., Thompson, E. R., Donaldson, J. C. & Siler, L. G. 1983 AIAA Paper 83–1761.
Stewartson, K. 1964 Theory of Laminar Boundary Layers in Compressible Fluids. Oxford University Press.
Tollmien, W. 1929 Nachr. Ges. Wiss. Göttingen, Math.-Phys. Klasse, pp. 21.