Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-04T07:36:58.662Z Has data issue: false hasContentIssue false

On the shape of small sessile and pendant drops by singular perturbation techniques

Published online by Cambridge University Press:  26 April 2006

S. B. G. O'Brien
Affiliation:
Philips Research Laboratories, P.O. Box 80000, 5600 JA Eindhoven, The Netherlands Current address: Mathematical Institute, 24-29 St Giles’, Oxford OX1 3LB, UK.

Abstract

The problem of obtaining asymptotic expressions describing the shape of small sessile and pendant drops is revisited. Both cases display boundary-layer behaviour and the method of matched asymptotic expansions is used to obtain solutions. These give good agreement when compared with numerical results. The sessile solutions are relatively straightforward, while the pendant drop displays a behaviour which is both rich and interesting.

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bashforth, F. & Adams, J. C. 1883 The Theories of Capillary Action. Cambridge University Press.
Chesters, A. K. 1977 An analytical solution for the profile and volume of a small drop or bubble symmetrical about a vertical axis. J. Fluid Mech. 81, 609624.Google Scholar
Hartland, S. & Hartley, R. W. 1976 Axisymmetric Fluid Interfaces. Elsevier.
James, D. F. 1974 The meniscus on the outside of a small circular cylinder. J. Fluid Mech. 63, 659664.Google Scholar
Kuiken, H. K. 1991 A single-parameter method for the determination of surface tension and contact angle. Colloids and Surfaces (submitted).Google Scholar
Lagerstrom, P. A. & Casten, R. G. 1972 Basic concepts underlying singular perturbation techniques. SIAM Rev. 14, 63120.Google Scholar
O'Brien, S. B. G. & Brule, B. H. A. A. van den 1991 J. Chem. Soc., Faraday Trans. I (submitted).
Padday, J. F. 1971 The profiles of axially symmetric menisci.. Phil. Trans. R. Soc. Lond. A 269, 265293.Google Scholar
Padday, J. F. & Pitt, A. R. 1972 Surface and interfacial tensions from the profile of a sessile drop. Proc. R. Soc. Lond. A 329, 421–431.Google Scholar
Rienstra, S. W. 1990 The shape of a sessile drop for small and large surface tension. J. Engng Maths 24, 193202.Google Scholar
Shanahan, M. E. R. 1982 An approximate theory describing the profile of a sessile drop. J. Chem. Soc., Faraday Trans. I 78, 27012710.Google Scholar