Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T09:16:17.639Z Has data issue: false hasContentIssue false

On the rotation of porous ellipsoids in simple shear flows

Published online by Cambridge University Press:  26 September 2013

Hassan Masoud*
Affiliation:
Applied Mathematics Laboratory, Courant Institute of Mathematical Sciences, New York University, NY 10012, USA Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Howard A. Stone
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Michael J. Shelley
Affiliation:
Applied Mathematics Laboratory, Courant Institute of Mathematical Sciences, New York University, NY 10012, USA
*
Email address for correspondence: [email protected]

Abstract

We study theoretically the dynamics of porous ellipsoids rotating in simple shear flows. We use the Brinkman–Debye–Bueche (BDB) model to simulate flow within and through particles and solve the coupled Stokes–BDB equations to calculate the overall flow field and the rotation rate of porous ellipsoids. Our results show that the permeability has little effect on the rotational behaviour of particles, and that Jeffery’s prediction of the angular velocity of impermeable ellipsoids in simple shear flows (Proc. R. Soc. Lond. A, vol. 102, 1922, pp. 161–179) remains an excellent approximation, if not an exact one, for porous ellipsoids. Employing an appropriate scaling, we also present approximate expressions for the torque exerted on ellipses and spheroids rotating in a quiescent fluid. Our findings can serve as the basis for developing a suspension theory for non-spherical porous particles, or for understanding the orientational diffusion of permeable ellipses and spheroids.

Type
Rapids
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abade, G. C., Cichocki, B., Ekiel-Jezewska, M. L., Nagele, G. & Wajnryb, E. 2010 High-frequency viscosity of concentrated porous particles suspensions. J. Chem. Phys. 133, 084906.Google Scholar
Adler, P. M. & Mills, P. M. 1979 Motion and rupture of a porous sphere in a linear flow field. J. Rheol. 23, 2537.Google Scholar
Blaser, S. 2000 Flocs in shear and strain flows. J. Colloid Interface Sci. 225, 273284.CrossRefGoogle ScholarPubMed
Bretherton, F. P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14, 284304.Google Scholar
Brinkman, H. C. 1947 A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 2734.Google Scholar
Brinkman, H. C. 1948 On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. A 1, 8186.Google Scholar
Chwang, A. T. & Wu, T. Y. T. 1975 Hydromechanics of low-Reynolds-number flow. Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67, 787815.CrossRefGoogle Scholar
Cichocki, B. & Felderhof, B. U. 2009 Hydrodynamic friction coefficients of coated spherical particles. J. Chem. Phys. 130, 164712.Google Scholar
Darcy, H. 1856 Les Fontaines Publiques de la Ville de Dijon: Exposition et Application. Victor Dalmont.Google Scholar
Davis, R. H. & Stone, H. A. 1993 Flow through beds of porous particles. Chem. Engng Sci. 48, 39934005.Google Scholar
Debye, P. & Bueche, A. M. 1948 Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J. Chem. Phys. 16, 573579.Google Scholar
Deen, W. M. 1987 Hindered transport of large molecules in liquid-filled pores. AIChE J. 33, 14091425.Google Scholar
Deng, M. & Dodson, C. T. J. 1994 Random star patterns and paper formation. Tappi J. 77, 195199.Google Scholar
Durlofsky, L. & Brady, J. F. 1987 Analysis of the Brinkman equation as a model for flow in porous-media. Phys. Fluids 30, 33293341.Google Scholar
Felderhof, B. U. 1975 Frictional properties of dilute polymer solutions: III. Translational friction coefficient. Physica A 80, 6375.Google Scholar
Gujer, W. & Boller, M. 1978 Basis for the design of alternative chemical-biological waste-water treatment processes. Prog. Water Technol. 10, 741758.Google Scholar
Higdon, J. J. L. & Kojima, M. 1981 On the calculation of Stokes flow past porous particles. Intl J. Multiphase Flow 7, 719727.Google Scholar
Hsu, J. P. & Hsieh, Y. H. 2003 Drag force on a porous, non-homogeneous spheroidal floc in a uniform flow field. J. Colloid Interface Sci. 259, 301308.Google Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.Google Scholar
Keller, S. R. & Wu, T. Y. 1977 Porous prolate-spheroidal model for ciliated microorganisms. J. Fluid Mech. 80, 259278.Google Scholar
Kirsh, V. A. 2006 Stokes flow past periodic rows of porous cylinders. Theor. Found. Chem. Engng 40, 465471.Google Scholar
Ma, M. Y., Zhu, Y. J., Li, L. & Cao, S. W. 2008 Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate: preparation and application in drug delivery. J. Mater. Chem. 18, 27222727.Google Scholar
Masoud, H. & Alexeev, A. 2010 Permeability and diffusion through mechanically deformed random polymer networks. Macromolecules 43, 1011710122.Google Scholar
Masoud, H. & Alexeev, A. 2012 Controlled release of nanoparticles and macromolecules from responsive microgel capsules. ACS Nano 6, 212219.CrossRefGoogle ScholarPubMed
Masoud, H., Bingham, B. I. & Alexeev, A. 2012 Designing maneuverable micro-swimmers actuated by responsive gel. Soft Matt. 8, 89448951.CrossRefGoogle Scholar
Mo, G. B. & Sangani, A. S. 1994 A method for computing Stokes flow interactions among spherical objects and its application to suspensions of drops and porous particles. Phys. Fluids 6, 16371652.Google Scholar
Nguyen, H., Karp-Boss, L., Jumars, P. A. & Fauci, L. 2011 Hydrodynamic effects of spines: A different spin. Limnol. Oceanogr.-Fluids Environ. 1, 110119.Google Scholar
Ollila, S. T. T., Ala-Nissila, T. & Denniston, C. 2012 Hydrodynamic forces on steady and oscillating porous particles. J. Fluid Mech. 709, 123148.CrossRefGoogle Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
Regnier, F. E. 1991 Perfusion chromatography. Nature 350, 634635.Google Scholar
Reuland, P., Felderhof, B. U. & Jones, R. B. 1978 Hydrodynamic interaction of two spherically symmetric polymers. Physica A 93, 465475.Google Scholar
Richardson, J. & Power, H. 1996 A boundary element analysis of creeping flow past two porous bodies of arbitrary shape. Engng Anal. Bound. Elem. 17, 193204.Google Scholar
Sonntag, R. C. & Russel, W. B. 1987 Structure and breakup of flocs subjected to fluid stresses. II. Theory. J. Colloid Interface Sci. 115, 378389.CrossRefGoogle Scholar
Stuart, M. A. C., Huck, W. T. S., Genzer, J., Muller, M., Ober, C., Stamm, M., Sukhorukov, G. B., Szleifer, I., Tsukruk, V. V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I. & Minko, S. 2010 Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101113.Google Scholar
Vainshtein, P. & Shapiro, M. 2006 Porous agglomerates in the general linear flow field. J. Colloid Interface Sci. 298, 183191.CrossRefGoogle ScholarPubMed
Vainshtein, P., Shapiro, M. & Gutfinger, C. 2004 Mobility of permeable aggregates: effects of shape and porosity. J. Aerosol Sci. 35, 383404.CrossRefGoogle Scholar
Vanni, M. & Gastaldi, A. 2011 Hydrodynamic forces and critical stresses in low-density aggregates under shear flow. Langmuir 27, 1282212833.Google Scholar
Yang, S. M. & Hong, W. H. 1988 Motions of a porous particle in Stokes flow. Part 1. Unbounded single-fluid domain problem. Korean J. Chem. Engng 5, 2334.Google Scholar
Yano, H., Kieda, A. & Mizuno, I. 1991 The fundamental solution of Brinkman equation in 2 dimensions. Fluid Dyn. Res. 7, 109118.Google Scholar
Zlatanovski, T. 1999 Axisymmetric creeping flow past a porous prolate spheroidal particle using the Brinkman model. Q. J. Mech. Appl. Maths 52, 111126.Google Scholar