Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T15:01:02.875Z Has data issue: false hasContentIssue false

On the reverse transition of a turbulent flow under the action of buoyancy forces

Published online by Cambridge University Press:  29 March 2006

Alejandro Steiner
Affiliation:
Département de Mécanique, Université de Paris Present address: Department of Mechanics, University of Chile, Santiago, Chile.

Abstract

Experiments were conducted in an ascending laminar flow through a vertical pipe under combined free and forced convection at constant heat flux through the wall.

Mean velocity and temperature profiles were measured with a hot-wire probe. This velocity profile which is deformed by the buoyancy forces, enabled us to compute the reduced acceleration parameter. The profiles obtained showed that the value of the parameter at which reverse transition takes place is approximately the same as that found in isothermal boundary-layer flow. By measuring the autocorrelation function of the velocity after the reverse transition it was shown that the flow in the boundary layer becomes laminar as well as fluctuating and that it oscillates with a predominating period.

Type
Research Article
Copyright
© 1971 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badri Narayanan, M. A. & Ramjee, V. 1969 On the criteria for reverse transition in a two-dimensional boundary-layer flow J. Fluid Mech. 35, 225.Google Scholar
Bradshaw, P. 1969 A note on reverse transition J. Fluid Mech. 35, 387.Google Scholar
Collis, D. C. & Williams, M. J. 1959 Two-dimensional convection from heated wires at low Reynolds numbers J. Fluid Mech. 6, 357.Google Scholar
Eckert, E. R. G. & Rodi, W. 1968 Reverse transition turbulent-laminar for flow through a tube with fluid injection J. Appl. Mech. 35, 817.Google Scholar
Hall, W. B. & Jackson, J. D. 1969 Laminarisation of a turbulent pipe flow by buoyancy forces. ASME Publication 69 HT55.Google Scholar
Hallman, T. M. 1956 Combined forced and free-laminar heat transfer in vertical tubes with uniform internal heat generation Trans. ASME, 78, 1831.Google Scholar
Hinze, J. E. 1959 Turbulence. McGraw Hill.
Kreith, F. 1965 Reverse transition in radial source flow between two parallel planes Phys. Fluids, 8, 1189.Google Scholar
Launder, B. E. 1964 MIT Cambridge Gas turbine Laboratory Report no. 77.
Moller, P. S. 1963 Aeron. Quart. 14, 187.
Moretti, P. M. & Kays, W. M. 1965 Heat transfer to a turbulent boundary layer with varying free-stream velocity and varying surface temperature. An experimental study Int. J. Heat Mass Trans. 8, 1187.Google Scholar
Mreiden, A. 1968 These pour l'’btention du titre de Docteur Ingénieur. Faculté des Sciences de Paris.
Patel, V. C. & Head, M. R. 1968 Reversion of turbulent to laminar flow J. Fluid Mech. 34, 371.Google Scholar
Schraub, F. A. & Kline, S. J. 1965 Thermo sciences division, Stanford University, rep. MD-11.
Sibulkin, M. 1962 Transition from turbulent to laminar pipe flow Phys. Fluids, 5, 280.Google Scholar
Steiner, A. & Meyer, G. 1970 Sur les mésures par anémometrie a fil chaud de temperature constante. C.R. Acad. Sci. Paris, t. 270. Serie A-155.Google Scholar
Townsend, A. A. 1961 Equilibrium layers and wall turbulence J. Fluid Mech. 11, 97.Google Scholar
Wilson, D. G. & Pope, J. A. 1954 Convective heat transfer to gaz turbine blades surfaces. Proc. Inst. Mech. Engrs, no 168, 861.Google Scholar