Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T22:43:59.849Z Has data issue: false hasContentIssue false

On the relationship between efficiency and wake structure of a batoid-inspired oscillating fin

Published online by Cambridge University Press:  05 December 2011

Peter A. Dewey*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
Antoine Carriou
Affiliation:
Department of Engineering, École Supérieure de Physique et de Chimie Industrielles, Paris, France
Alexander J. Smits
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: [email protected]

Abstract

A mechanical representation of batoid-like propulsion using a flexible fin with an elliptical planform shape is used to study the hydrodynamics of undulatory propulsion. The wake is found to consist of a series of interconnected vortex rings, whereby leading and trailing edge vortices of subsequent cycles become entangled with one another. Efficient propulsion is achieved when leading and trailing edge vortices coalesce at the spanwise location where most of the streamwise fluid momentum is concentrated in the wake of the fin. Both the Strouhal number and the wavelength are found to have a significant effect on the wake structure. In general, a decrease in wavelength promotes a wake transition from shedding a single vortex per half-oscillation period to shedding a pair of vortices per half-oscillation period. An increase in Strouhal number causes the wake to bifurcate a finite distance downstream of the trailing edge of the fin into a pair of jets oriented at an acute angle to the line of symmetry. The bifurcation distance decreases with increasing Strouhal number and wavelength, and it is shown to obey a simple scaling law.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Anderson, J. M., Streitlien, K., Barrett, D. S. & Triantafyllou, M. S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.CrossRefGoogle Scholar
2. Blondeaux, P. O., Fornarelli, F., Guglielmini, L., Triantafyllou, M. S. & Verzicco, M. 2005 Numerical experiments on flapping foils mimicking fish-like locomotion. Phys. Fluids 17, 113601.CrossRefGoogle Scholar
3. Borazjani, I. & Sotiropoulos, F. 2008 Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J. Expl Biol. 211, 15411558.CrossRefGoogle ScholarPubMed
4. Buchholz, J. H. J., Green, M. A. & Smits, A. J. 2011 Scaling the circulation shed by a pitching panel. J. Fluid Mech. 688, 591601.CrossRefGoogle Scholar
5. Buchholz, J. H. J. & Smits, A. J. 2006 On the evolution of the wake structure produced by a low-aspect-ratio pitching panel. J. Fluid Mech. 546, 433443.CrossRefGoogle Scholar
6. Buchholz, J. H. J. & Smits, A. J. 2008 The wake structure and thrust performance of a rigid low-aspect-ratio pitching panel. J. Fluid Mech. 603, 331365.CrossRefGoogle ScholarPubMed
7. Chan, A. S., Dewey, P. A., Jameson, A., Liang, C. & Smits, A. J. 2011 Vortex suppression and drag reduction in the wake of counter-rotating cylinders. J. Fluid Mech. 679, 343382.CrossRefGoogle Scholar
8. Clark, R. P. & Smits, A. J. 2006 Thrust production and wake structure of a batoid-inspired oscillating fin. J. Fluid Mech. 562, 415429.CrossRefGoogle ScholarPubMed
9. Dabiri, J. O. 2005 On the estimation of swimming and flying forces from wake measurements. J. Expl Biol. 208, 35193532.CrossRefGoogle ScholarPubMed
10. Dabiri, J. O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41, 1733.CrossRefGoogle Scholar
11. Dabiri, J. O. & Gharib, M. 2005 Starting flow through nozzles with temporally variable exit diameter. J. Fluid Mech. 538, 111136.CrossRefGoogle Scholar
12. Dong, H., Mital, R. & Najjar, F. M. 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309343.CrossRefGoogle Scholar
13. Drucker, E. G. & Lauder, G. V. 1999 Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using particle image velocimetry. J. Fluid Mech. 202, 23922412.Google ScholarPubMed
14. von Ellenrieder, K. D., Parker, K. & Soria, J. 2003 Flow structures behind a heaving and pitching finite-span wing. J. Fluid Mech. 490, 129138.CrossRefGoogle Scholar
15. Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.CrossRefGoogle Scholar
16. Godoy-Diana, R., Aider, J. L. & Wesfreid, J. E. 2008 Transitions in the wake of a flapping foil. Phys. Rev. E 77, 016308.CrossRefGoogle ScholarPubMed
17. Godoy-Diana, R., Marais, C., Aider, J. L. & Wesfreid, J. E. 2009 A model for the symmetry breaking of the reverse Bénard–von Kármán vortex street produced by a flapping foil. J. Fluid Mech. 622, 2332.CrossRefGoogle Scholar
18. Green, M. A. & Smits, A. J. 2008 Effects of three-dimensionality on thrust production by a pitching panel. J. Fluid Mech. 615, 211220.CrossRefGoogle ScholarPubMed
19. Guglielmini, L. & Blondeaux, P. 2004 Propulsive efficiency of oscillating foils. Euro. J. Fluid Mech. 23, 255278.CrossRefGoogle Scholar
20. Heathcote, S., Wang, Z. & Gursul, I. 2008 Effect of spanwise flexibility on flapping wing propulsion. J. Fluids Struct. 24, 183199.CrossRefGoogle Scholar
21. Heine, C. 1992 Mechanics of flapping fin locomotion in the cownose ray, Rhinoptera bonasus (Elasmobranchii: Myliobatidae). PhD thesis, Duke University, Durham, NC, USA.Google Scholar
22. Hultmark, M., Leftwich, M. & Smits, A. J. 2007 Flowfield measurements in the wake of a robotic lamprey. Exp. Fluids 43, 683690.CrossRefGoogle ScholarPubMed
23. Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. Center for Turbulence Research Rep. CTR-S88.Google Scholar
24. Jeon, D. & Gharib, M. 2004 On the relationship between the vortex formation process and cylinder wake patterns. J. Fluid Mech. 519, 161181.CrossRefGoogle Scholar
25. Jiménez, J. M. 2002 Low Reynolds number studies in the wake of a submarine model using particle image velocimetry. Master’s thesis, Princeton University, Princeton, NJ, USA.Google Scholar
26. Koochesfahani, M. M. 1989 Vortical patterns in the wake of an oscillating aerofoil. AIAA Journal 27, 12001205.CrossRefGoogle Scholar
27. Lentink, D., Muijres, F. T., Donker-Duyvis, F. J. & van Leeuwen, J. L. 2008 Vortex wake interactions of a flapping foil that models animal swimming and flight. J. Expl Biol. 211, 267273.CrossRefGoogle ScholarPubMed
28. Lewin, G. C. & Haj-Hariri, H. 2003 Modelling thrust generation of a two-dimensional heaving aerofoil in a viscous flow. J. Fluid Mech. 492, 339362.CrossRefGoogle Scholar
29. Milano, M. & Gharib, M. 2005 Uncovering the physics of flapping flat plates with artificial evolution. J. Fluid Mech. 534, 403409.CrossRefGoogle Scholar
30. Raffel, M., Willert, C. & Kompenhans, J. 1998 Particle Image Velocimetry. Springer.CrossRefGoogle Scholar
31. Rosenberger, L. 2001 Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J. Expl Biol. 204, 379394.CrossRefGoogle ScholarPubMed
32. Schaefer, J. & Summers, A. 2005 Batoid wing skeletal structure: novel morphologies, mechanical implications, and phylogenetic patterns. J. Morphol. 264, 298313.CrossRefGoogle ScholarPubMed
33. Schnipper, T., Andersen, A. & Bohr, T. 2009 Vortex wakes of a flapping foil. J. Fluid Mech. 633, 411423.CrossRefGoogle Scholar
34. Taylor, G. K., Nudds, R. L. & Thomas, A. L. R. 2003 Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 435, 707711.CrossRefGoogle Scholar
35. Triantafyllou, G. S., Triantafyllou, M. S. & Grosenbaugh, M. A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7, 205224.CrossRefGoogle Scholar
36. Triantafyllou, M. S., Triantafyllou, G. S. & Gopalkrishnan, R. 1991 Wake mechanics for thrust generation in oscillating foils. Phys. Fluids 3 (12), 28352837.CrossRefGoogle Scholar
37. Tytell, E. D. & Lauder, G. V. 2004 The hydrodynamics of eel swimming. Part I. Wake structure. J. Expl Biol. 207, 18251841.CrossRefGoogle Scholar
38. Walker, J. A. & Westneat, M. W. 2002 Performance limits of labriform propulsion and correlates with fin shape and motion. J. Expl Biol. 205, 177187.CrossRefGoogle ScholarPubMed
39. Williamson, C. H. K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2, 355381.CrossRefGoogle Scholar