Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T21:46:42.279Z Has data issue: false hasContentIssue false

On the power laws for turbulent jets, wakes and shearing layers and their relationship to the principle of marginal instability

Published online by Cambridge University Press:  19 April 2006

Martin Lessen
Affiliation:
Department of Mechanical and Aerospace Sciences, University of Rochester, New York 14627
Temporary address: U.S. Office of Naval Research, 223/231 Old Marylebone Road, London NW1 5TH.

Abstract

The classical power laws describing the similarity solutions for turbulent jets, wakes and shearing layers are found to determine a fixed turbulent Reynolds number for each flow. The power laws are then derived from the principle of marginal instability without the usual assumptions.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775.Google Scholar
Corrsin, S. 1957 Some current problems in turbulent shear flows. In Naval Hydrodynamics, chap. 15. Nat. Acad. Sci. – Nat. Res. Counc. publ. 515.Google Scholar
Goertler, H. 1942 Berechnung von Aufgaben der freien Turbulenz auf Grund eines neuen Näherungsansatzes. Z. angew. Math. Mech. 22, 244.Google Scholar
Lessen, M. & Paillet, F. L. 1976 Marginal instability of turbulent shearing layers and the break point of a jet. Phys. Fluids 19, 942.Google Scholar
Lessen, M. & Singh, P. J. 1974 Stability of turbulent jets and wakes. Phys. Fluids 17, 1329.Google Scholar
Malkus, W. V. R. 1956 Outline of a theory of turbulent shear flow. J. Fluid Mech. 1, 521.Google Scholar
Mattingly, G. E. & Chang, C. C. 1974 Unstable waves in an axisymmetric jet column. J. Fluid Mech. 64, 541.Google Scholar
Prandtl, L. 1925 Über die ausgebildete Turbulenz. Z. angew. Math. Mech. 5, 136.Google Scholar
Reichardt, H. 1941 Über eine neue Theorie der freien Turbulenz. Z. angew. Math. Mech. 21, 257.Google Scholar
Schlichting, H. 1968 Boundary-Layer Theory, 6th edn. McGraw-Hill.Google Scholar
Townsend, A. A. 1956 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar