Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T22:01:12.073Z Has data issue: false hasContentIssue false

On the motion of a fluid-fluid interface along a solid surface

Published online by Cambridge University Press:  29 March 2006

Elizabeth B. Dussan V.
Affiliation:
Department of Mechanics and Materials Science, The Johns Hopkins University, Baltimore, Maryland 21218 Present address: Department of Chemical and Biochemical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 1917.
Stephen H. Davis
Affiliation:
Department of Mechanics and Materials Science, The Johns Hopkins University, Baltimore, Maryland 21218

Abstract

A fluid-fluid interface that joins a solid surface forms a common line. If the common line moves along the solid, a mutual displacement process is involved and is studied here. Some simple experiments motivate the formulation of the basic assumption of the analysis. The basic assumption is a formalization of the idea that the fluid-fluid interface rolls on or unrolls off the solid. This forms an axiom for the mostly kinematical analysis that follows. The predictions are tested through a series of qualitative experiments. The role of the no-slip boundary condition at the solid surface is discussed.

Type
Research Article
Copyright
© 1974 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bascom, W. D., Cottington, R. L. & Singleterry, C. R. 1964 In Contact Angles, Wettability and Adhesion (ed. R. F. Gould), pp. 355379. Washington: Am. Chem. Soc.
Benson, G. C. & Yun, K. S. 1967 Solid–Gas Interface (ed. E. A. Flood), vol. 1. Marcel Dekker.
Coleman, B. D., Markovitz, H. & Noll, W. 1966 Viscometric Flows of Non-Newtonian Fluids. Springer.
Dussan V. E. B. 1972 Ph.D. thesis, Dept. Mech. & Mat. Sci., The Johns Hopkins University, Baltimore, Maryland.
Hansen, R. J. & Toong, T. Y. 1971 J. Colloid Interface Sci. 37, 196.
Huh, C. & Scriven, L. E. 1971 J. Colloid Interface Sci. 35, 85.
Ince, E. L. 1956 Ordinary Differential Equations. Dover.
Ludviksson, V. & Lightfoot, E. N. 1968 A.I.Ch.E. J. 14, 674.
Ludviksson, V. & Lightfoot, E. N. 1971 A.I.Ch.E. J. 17, 1166.
Maxwell, J. C. 1876 Capillary action. Encycl. Brit. 9th edn. London. (See also 11th edn.)
Moffatt, H. K. 1964 J. Fluid Mech. 18, 1.
Prutow, R. J. & Ostrach, S. 1971 AFOSR Sci. Rep. no. 70–28827, FTAS/TR-70–56.
Read, W. T. & Shockley, W. 1950 Phys. Rev. 78, 275.
Riesz, F. & Sz-Nagy, B. 1955 Functional Analysis. New York: Unger.
Schonhorn, H., Frisch, H. L. & Kwei, T. K. 1966 J. Appl. Phys. 37, 4967.
Schwartz, A. M., Rader, C. A. & Huey, E. 1964 In Contact Angles, Wettability and Adhesion (ed. Contact Angles, Wettability and Adhesion R. F.), pp. 250267. Washington: Am. Chem. Soc.
Truesdell, C. A. & Noll, W. 1960 Classical Field Theories, Handbuch der Physik, vol. 3/1. Springer.
Worthington, A. M. 1963 A Study of Splashes. Macmillan.
Yarnold, G. D. 1938 Proc. Phys. Soc. 50, 540.
Zisman, W. A. 1972 J. Paint Tech. 44, 41.