Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T17:35:41.256Z Has data issue: false hasContentIssue false

On the modulating effect of three-dimensional instabilities in open cavity flows

Published online by Cambridge University Press:  30 October 2014

J. Basley*
Affiliation:
CNRS, Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur (LIMSI), F-91403 Orsay, France Univ. Paris-Sud, F-91405 Orsay, France Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Victoria, 3800, Australia
L. R. Pastur
Affiliation:
CNRS, Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur (LIMSI), F-91403 Orsay, France Univ. Paris-Sud, F-91405 Orsay, France
F. Lusseyran
Affiliation:
CNRS, Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur (LIMSI), F-91403 Orsay, France
J. Soria
Affiliation:
Laboratory for Turbulence Research in Aerospace and Combustion (LTRAC), Department of Mechanical and Aerospace Engineering, Monash University, Victoria, 3800, Australia Department of Aeronautical Engineering, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
N. Delprat
Affiliation:
CNRS, Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur (LIMSI), F-91403 Orsay, France Sorbonne Universités, UPMC Univ. Paris 6, UFR d’Ingénierie, F-75005 Paris, France
*
Email address for correspondence: [email protected]

Abstract

Open cavity flows are known to select and enhance locked-on modes or tones. High-energy self-sustained oscillations arise within the shear layer, impinging onto the trailing edge of the cavity. These self-sustained oscillations are subject to amplitude modulations (AMs) at multiple low frequencies. However, only a few studies have addressed the identification of the lowest modulating frequencies. The present work brings to light salient AMs of the shear layer waves and identifies their source as three-dimensional dynamics existing inside the cavity. Indeed, the recirculating inner flow gives rise to centrifugal instabilities, which entail broad-band frequencies down two orders of magnitude lower than those of the self-sustained oscillations. Using time-resolved PIV (TRPIV) in two planes, the nonlinearly saturated dynamics is analysed in both space and time by means of proper orthogonal decomposition, global Fourier decomposition and Hilbert–Huang transforms. The inner flow can be decomposed as three-dimensional waves carried by the main recirculation. Bicoherence distributions are computed to highlight the nonlinear interactions between these spanwise-travelling waves inside the cavity and the locked-on modes. The modulated envelope of the shear layer oscillations is extracted and investigated with regards to the inner-flow dynamics. Strong cross-correlations, in time rather than in space, reveal a global coupling mechanism, possibly related to the beating of the spanwise-travelling waves.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aidun, C. K., Triantafillopoulos, N. G. & Benson, J. D. 1991 Global stability of a lid-driven cavity with throughflow: flow visualization studies. Phys. Fluids A 3, 20812091.Google Scholar
Albensoeder, S. & Kuhlmann, H. C. 2006 Nonlinear three-dimensional flow in the lid-driven square cavity. J. Fluid Mech. 569, 465480.Google Scholar
Albensoeder, S., Kuhlmann, H. C. & Rath, H. J. 2001 Three-dimensional centrifugal-flow instabilities in the lid-driven-cavity problem. Phys. Fluids 13, 121135.Google Scholar
Barkley, D., Gomes, M. G. M. & Henderson, R. D. 2002 Three-dimensional instability in flow over a backward-facing step. J. Fluid Mech. 473, 167190.CrossRefGoogle Scholar
Basley, J.2012 An experimental investigation on waves and coherent structures in a three-dimensional open cavity flow. PhD thesis, Université Paris-Sud (Orsay, France) & Monash University (Melbourne, Australia).Google Scholar
Basley, J., Pastur, L. R., Delprat, N. & Lusseyran, F. 2013 Space–time aspects of a three-dimensional multi-modulated open cavity flow. Phys. Fluids 25 (6), 064105.Google Scholar
Basley, J., Pastur, L. R., Lusseyran, F., Faure, T. M. & Delprat, N. 2011 Experimental investigation of global structures in an incompressible cavity flow using time-resolved PIV. Exp. Fluids 50, 905918.CrossRefGoogle Scholar
Basley, J., Soria, J., Pastur, L. R. & Lusseyran, F. 2014 Three-dimensional waves inside an open cavity and interactions with the impinging shear layer. In Fluid Mechanics and its Applications, vol. 107. Springer.Google Scholar
Beaudoin, J.-F., Cadot, O., Aider, J.-L. & Wesfreid, J. E. 2004 Three-dimensional stationary flow over a backward-facing step. Eur. J. Mech. (B/Fluids) 23, 147155.CrossRefGoogle Scholar
Benney, D. J. & Lin, C. C. 1960 On the secondary motion induced by oscillations in a shear flow. Phys. Fluids 3, 656657.CrossRefGoogle Scholar
Blackburn, H. M. & Lopez, J. M. 2003 The onset of three-dimensional standing and modulated travelling waves in a periodically driven cavity flow. J. Fluid Mech. 497, 289317.Google Scholar
Bödewadt, U. T. 1940 Z. Angew. Math. Mech. 20, 241253.Google Scholar
Brès, G. A. & Colonius, T. 2008 Three-dimensional instabilities in compressible flow over open cavities. J. Fluid Mech. 599, 309339.Google Scholar
Buchmann, N. A., Atkinson, C. & Soria, S. 2013 Influence of ZNMF jet flow control on the spatio-temporal flow structure over a NACA-0015 airfoil. Exp. Fluids 54 (3), 114.Google Scholar
Cammilleri, A., Gueniat, F., Carlier, J., Pastur, L., Memin, E., Lusseyran, F. & Artana, G. 2013 Pod-spectral decomposition for fluid flow analysis and model reduction. Theor. Comput. Fluid Dyn. 27, 787815.CrossRefGoogle Scholar
Chang, K., Constantinescu, G. & Park, S.-O. 2006 Analysis of the flow and mass transfer processes for the incompressible flow past an open cavity with a laminar and a fully turbulent incoming boundary layer. J. Fluid Mech. 561, 113145.Google Scholar
Chiang, T., Sheu, W. & Hwang, R. 1998 Effects of the Reynolds number on the eddy structure in a lid-driven cavity. Intl J. Numer. Meth. Fluids 26, 557579.3.0.CO;2-R>CrossRefGoogle Scholar
Cordier, L. & Bergmann, M.2003 Proper orthogonal decomposition: an overview. In VKI Lecture Series (2003-03): Post Processing of Experimental and Numerical Data.Google Scholar
Delprat, N. 2006 Rossiter formula: a simple spectral model for a complex amplitude modulation process? Phys. Fluids 18, 071703.Google Scholar
Delprat, N. 2010 Low-frequency components and modulation processes in compressible cavity flows. J. Sound Vib. 329 (22), 47974809.CrossRefGoogle Scholar
Douay, C. L., Guéniat, F., Pastur, L., Lusseyran, F. & Faure, T. M. 2011 Instabilités centrifuges dans un écoulement de cavité: décomposition en modes dynamiques. In Comptes-Rendus des Rencontres du Non-linéaire, vol. 14, pp. 4752.Google Scholar
Faure, T. M., Adrianos, P., Lusseyran, F. & Pastur, L. R. 2007 Visualizations of the flow inside an open cavity at medium range Reynolds numbers. Exp. Fluids 42 (2), 169184.Google Scholar
Faure, T. M., Pastur, L. R., Lusseyran, F., Fraigneau, Y. & Bisch, D. 2009 Three-dimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape. Exp. Fluids 47 (3), 395410.CrossRefGoogle Scholar
Fernandez-Feria, R. 2000 Axisymmetric instabilities of Bödewadt flow. Phys. Fluids 12, 1730.CrossRefGoogle Scholar
Gloerfelt, X.2006 Compressible pod/Galerkin reduced-order model of self-sustained oscillations in a cavity. AIAA Paper 2006 (2433).CrossRefGoogle Scholar
Gloerfelt, X. 2008 Compressible proper orthogonal decomposition/Galerkin reduced-order model of self-sustained oscillations in a cavity. Phys. Fluids 20 (11), 115105.Google Scholar
Gonzalez, L. M., Ahmed, M., Kühnen, J., Kuhlmann, H. C. & Theofilis, V. 2011 Three-dimensional flow instability in a lid-driven isosceles triangular cavity. J. Fluid Mech. 675, 369396.Google Scholar
Görtler, H. 1955 Fifty Years of Boundary Layer Research. Vieweg and Son.Google Scholar
Guéniat, F., Pastur, L. & Lusseyran, F. 2014 Investigating mode competition and three-dimensional features from two-dimensional velocity fields in an open cavity flow by modal decompositions. Phys. Fluids 26 (8), 085101.Google Scholar
Guermond, J.-L., Migeon, C., Pineau, G. & Quartapelle, L. 2002 Start-up flows in a three-dimensional rectangular driven cavity of aspect ratio 1:1:2 at $Re=1000$ . J. Fluid Mech. 450, 169199.Google Scholar
Holmes, P., Lumley, J. L. & Berkooz, G. 1996 Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University press.CrossRefGoogle Scholar
Huang, N. E., Long, S. R. & Shen, Z. 1996 The mechanism for frequency downshift in nonlinear wave evolution. Adv. Appl. Mech. 32, 59111.Google Scholar
Huang, N. E., Shen, Z. & Long, S. R. 1999 A new view of nonlinear water waves: the Hilbert spectrum. Annu. Rev. Fluid Mech. 31, 417457.CrossRefGoogle Scholar
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C. & Liu, H. H. 1998 The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time-series analysis. Proc. R. Soc. Lond. A 454, 903995.Google Scholar
Isaacson, L. K. & Marshall, A. G. 1983 Nonlinear resonant interactions in internal cavity flows. AIAA J. 21 (5), 785786.Google Scholar
Iungo, G. V. & Lombardi, E. 2011 A procedure based on proper orthogonal decomposition for time–frequency analysis of time series. Exp. Fluids 51, 969985.Google Scholar
Jimenez, J. 1983 A spanwise structure in a plane shear layer. J. Fluid Mech. 132, 319336.CrossRefGoogle Scholar
Kegerise, M. A., Spina, E. F., Garg, S. & Cattafesta III, L. N. 2004 Mode-switching and nonlinear effects in compressible flow over a cavity. Phys. Fluids 16, 678687.Google Scholar
Kim, Y. C., Beall, J. M., Powers, E. J. & Miksad, R. W. 1980 Bispectrum and nonlinear wave coupling. Phys. Fluids 23 (2), 258263.Google Scholar
Kitsios, V., Cordier, L., Bonnet, J.-P., Ooi, A. & Soria, J. 2011 On the coherent structures and stability properties of a leading-edge separated aerofoil with turbulent recirculation. J. Fluid Mech. 683, 395416.Google Scholar
Knisely, C. & Rockwell, D. 1982 Self-sustained low-frequency components in an impinging shear layer. J. Fluid Mech. 116, 157186.Google Scholar
Koseff, J. R. & Street, R. L. 1984a The lid-driven cavity flow: a synthesis of qualitative and quantitative observations. Trans. ASME J. Fluids Engng 106, 390398.Google Scholar
Koseff, J. R. & Street, R. L. 1984b On endwall effects in a lid-driven cavity flow. Trans. ASME: J. Fluids Engng 106, 385389.Google Scholar
Koseff, J. R. & Street, R. L. 1984c Visualization studies of a shear driven three-dimensional recirculating flow. Trans. ASME: J. Fluids Engng 106, 2129.Google Scholar
Kuhlmann, H. C., Wanschura, M. & Rath, H. J. 1997 Flow in two-sided lid-driven cavities: non-uniqueness, instabilities, and cellular structures. J. Fluid Mech. 336, 267299.Google Scholar
Larchevêque, L., Sagaut, P. & Labbé, O. 2007 Large-eddy simulation of a subsonic cavity flow including asymmetric three-dimensional effects. J. Fluid Mech. 577, 105126.Google Scholar
Larchevêque, L., Sagaut, P., , T. H. & Comte, P. 2004 Large-eddy simulations of a compressible flow in a 3D open cavity at high Reynolds number. J. Fluid Mech. 516, 265301.Google Scholar
Lasheras, J. C. & Choi, H. 1988 Three-dimensional instability of a plane free shear layer: an experimental study of the formation and evolution of streamwise vortices. J. Fluid Mech. 189, 5386.Google Scholar
Lusseyran, F., Pastur, L. & Letellier, C. 2008 Dynamical analysis of an intermittency in an open cavity flow. Phys. Fluids 20 (11), 114101.Google Scholar
Malone, J., Debiasi, M., Little, J. & Samimy, M. 2009 Analysis of the spectral relationships of cavity tones in subsonic resonant cavity flows. Phys. Fluids 21 (5), 055103.CrossRefGoogle Scholar
Meseguer-Garrido, F., de Vicente, J., Valero, E. & Theofilis, V.2011 Effect of aspect ratio on the three-dimensional global instability analysis of incompressible open cavity flows. AIAA Paper 2011 (3605).Google Scholar
Meseguer-Garrido, F., de Vicente, J., Valero, E. & Theofilis, V. 2014 On linear instability mechanisms in incompressible open cavity flow. J. Fluid Mech. 752, 219236.Google Scholar
Metcalfe, R. W., Orszag, S. A., Brachet, M. E., Menon, S. & Riley, J. J. 1987 Secondary instability of a temporally growing mixing layer. J. Fluid Mech. 184, 207243.Google Scholar
Migeon, C., Pineau, G. & Texier, A. 2003 Three-dimensionality development inside standard parallelepipedic lid-driven cavities at $Re=1000$ . J. Fluids Struct. 17, 717738.Google Scholar
Miksad, R. W. 1972 Experiments on nonlinear stages of free shear layer transition. J. Fluid Mech. 56 (4), 695719.Google Scholar
Neary, M. D. & Stephanoff, K. D. 1987 Shear-layer-driven transition in a rectangular cavity. Phys. Fluids 30 (10), 29362946.Google Scholar
Pastur, L. R., Lusseyran, F., Faure, T. M., Fraigneau, Y., Pethieu, R. & Debesse, P. 2008 Quantifying the nonlinear mode competition in the flow over an open cavity at medium Reynolds number. Exp. Fluids 44 (4), 597608.Google Scholar
Pastur, L. R., Lusseyran, F., Fraigneau, Y. & Podvin, B. 2005 Determining the spectral signature of spatial coherent structures in an open cavity flow. Phys. Rev. E 72, 065301(R).Google Scholar
Pereira, J. C. F. & Sousa, J. J. M. 1995 Experimental and numerical investigation of flow oscillations in a rectangular cavity. Trans. ASME: J. Fluids Engng 117 (1), 6874.Google Scholar
Podvin, B., Fraigneau, Y., Lusseyran, F. & Gougat, P. 2006 A reconstruction method for the flow past an open cavity. Trans. ASME: J. Fluids Engng 128, 531540.Google Scholar
Powell, A. 1953 On edge tones and associated phenomena. Acustica 3, 233243.Google Scholar
Powell, A. 1961 On the edgetone. J. Acoust. Soc. Am. 33, 395409.Google Scholar
Powell, A. 1995 Lord Rayleigh’s foundations of aeroacoustics. J. Acoust. Soc. Am. 98, 18391844.Google Scholar
Ramanan, N. & Homsy, G. M. 1994 Linear stability of lid-driven cavity flow. Phys. Fluids 6, 26902701.CrossRefGoogle Scholar
Rockwell, D. 1977 Prediction of oscillation frequencies for unstable flow past cavities. Trans. ASME: J. Fluids Engng 99, 294300.Google Scholar
Rockwell, D. & Knisely, C. 1980 Observations of the three-dimensional nature of unstable flow past a cavity. Phys. Fluids 23, 425431.CrossRefGoogle Scholar
Rockwell, D. & Naudascher, E. 1978 Review – self-sustaining oscillations of flow past cavities. Trans. ASME: J. Fluids Engng 100, 152165.Google Scholar
Rockwell, D. & Naudascher, E. 1979 Self-sustained oscillations of impinging free shear layers. Annu. Rev. Fluid Mech. 11, 6794.Google Scholar
Rossiter, J.1964 Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aeronautical Research Council Report No. 3438.Google Scholar
Rowley, C. W., Colonius, T. & Basu, A. J. 2002 On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. J. Fluid Mech. 455, 315346.Google Scholar
Rowley, C. W., Colonius, T. & Murray, R. M. 2000 Pod based model of self-sustained oscillations in the flow past an open cavity. AIAA Paper 2000; (1969).Google Scholar
Sarohia, V. 1977 Experimental investigation of oscillations in flows over shallow cavities. AIAA J. 15 (7), 984991.Google Scholar
Sipp, D. & Jacquin, L. 2000 Three-dimensional centrifugal-type instabilities of two-dimensional flows in rotating systems. Phys. Fluids 12, 17401748.CrossRefGoogle Scholar
Soria, J. 1996 An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique. Exp. Therm. Fluid Sci. 12, 221233.Google Scholar
Soria, J. 1998 Multigrid approach to cross-correlation digital PIV and HPIV analysis. In Australasian Fluid Mechanics Conference, vol. 13. Monash University.Google Scholar
Soria, J., Cater, J. & Kostas, J. 1999 High resolution multigrid cross-correlation digital PIV measurements of a turbulent starting jet using half frame image shift film recording. Opt Laser Technol. 31, 312.Google Scholar
Taylor, G. I. 1923 Three-dimensional flow instability in a lid-driven isosceles triangular cavity. Phil. Trans. A 223, 289.Google Scholar
Theofilis, V. 2003 Advances in global linear instability of non-parallel and three-dimensional flows. Prog. Aerosp. Sci. 39 (4), 249315.Google Scholar
Theofilis, V., Duck, P. W. & Owen, J. 2004 Viscous linear stability analysis of rectangular duct and cavity flows. J. Fluid Mech. 505, 249286.Google Scholar
de Vicente, J.2010 Spectral multi-domain method for the global instability analysis of complex cavity flows. PhD thesis, Universidad Politécnica de Madrid.Google Scholar
de Vicente, J., Basley, J., Meseguer-Garrido, F., Soria, J. & Theofilis, V. 2014 Three-dimensional instabilities over a rectangular open cavity: from linear stability analysis to experimentation. J. Fluid Mech. 748, 189220.Google Scholar
Vikramaditya, N. S. & Kurian, J. 2012 Nonlinear aspects of supersonic flow past a cavity. Exp. Fluids 52, 13891399.Google Scholar
Vogel, M., Hirsa, A. H. & Lopez, J. M. 2003 Spatio-temporal dynamics of a periodically driven cavity flow. J. Fluid Mech. 478, 197226.Google Scholar
Welch, P. D. 1967 The use of fast Fourier treansform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. In Modern spectrum analysis, pp. 1720. IEEE Press.Google Scholar
Woo, C.-H., Kim, J.-S. & Lee, K.-H. 2007 Three-dimensional effects of supersonic cavity flow due to the variation of cavity aspect and width ratios. J. Mech. Sci. Technol. 22, 590598.Google Scholar
Yamouni, S., Sipp, D. & Jacquin, L. 2013 Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow: a global stability analysis. J. Fluid Mech. 717, 134165.Google Scholar
Ziada, S. & Rockwell, D. 1982 Oscillations of an unstable mixing layer impinging upon an edge. J. Fluid Mech. 124, 307334.Google Scholar